摘要
为了实现学生课堂行为如起立、端坐、举手的识别,提高识别的准确率和召回率,使用多模态数据如人体关键点信息、RGB图像等进行实验,并对训练数据的有效性进行探究,最终在测试集上达到92%的准确率和96%的召回率。实验结果表明,对多模态数据的合理应用以及对数据进行有效处理,可以有效提高识别任务的效果。
In order to realize the action recognition of classroom students,such as standing,sitting and raising hands,and improve the precision and recall rate of the recognition task,multi-modal data such as human body keypoints and RGB image are used in this paper,and the validity of training data is explored.Finally,the precision and recall rate reached 92%and 96%in the test set.The experimental results show that the proper application of multi-modal data and the effective processing of the data can effectively improve the effect of the recognition task.
作者
林灿然
许伟亮
李逸
LIN Can-ran;XU Wei-liang;LI Yi(School of Electro-Mechanical Engineering,Guangdong University of Technology,Guangzhou 510006)
出处
《现代计算机》
2020年第6期69-75,共7页
Modern Computer
基金
佛山市科技计划项目资助项目(No.2015IT100152)
广东季华实验室项目资助项目(No.X190071UZ190)
广州市高校创新创业教育重大项目资助项目(No.201709P05)
广州市民生科技攻关计划重大专项项目资助项目(No.201803010065)。
关键词
多模态
课堂
行为识别
Multi-Modal
Classroom
Action Recognition