期刊文献+

基于业务预测与聚类分析的网络疏忙评估方法 被引量:3

Network Load Alleviation Method Based on Traffic Prediction and Cluster Analysis
下载PDF
导出
摘要 随着不限量套餐的推广,移动用户的业务结构发生了巨大变化,音乐、短视频等业务的流量冲击给运营商网络带来的压力亟待缓解。针对这一问题,提出了一种容量管理方案,运用业务预测方法,充分考虑实施提前量,预估网络业务量发展趋势;进一步根据预估业务量及网络配置情况划分业务场景,通过聚类分析,实施差异化的疏忙手段。工程实践表明,该方案能够有效缓解现网容量问题,大大提高了容量建设的精准性,并且具有良好的时效性。 With the promotion of unlimited packages,the traffic structure of mobile users has undergone tremendous changes.The traffic impact of music,short video and other services on the carrier network needs to be alleviated.To solve this issue,this paper proposes a capacity management solution through traffic prediction method,taking a full consideration of implementation amount in advance and estimating the development trend of network traffic volume.Furthermore,the traffic scenarios are divided by estimating traffic volume and network configurations,and differentiated alleviation methods are implemented via clustering analysis.The engineering practice shows that the proposed solution can effectively alleviate the existing network capacity problem,significantly improves the accuracy of capacity construction,and has good timeliness.
作者 铁小辉 吴海迁 吴迪 TIE Xiaohui;WU Haiqian;WU Di(China Communication Construction Group Design Institute Co.,Ltd.,The Fourth Branch,Zhengzhou 450052,China)
出处 《移动通信》 2020年第3期62-66,共5页 Mobile Communications
关键词 业务预测 聚类分析 PRB利用率 RRC连接用户数 traffic prediction cluster analysis PRB utilization RRC connected users
  • 相关文献

参考文献4

二级参考文献3

共引文献21

同被引文献18

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部