摘要
为拓展超临界CO2技术在二醋酸纤维加工中的应用,采用不同超临界CO2处理温度对二醋酸纤维进行处理,借助扫描电子显微镜、傅里叶变换红外光谱仪、X射线多晶衍射仪、热重分析仪、差示扫描量热仪和万能强力仪探讨了处理前后纤维表面形态、化学结构、聚集态结构、热降解性能、热稳定性和断裂强力的变化。结果表明:不同温度(80、100、120℃)条件下,纤维结晶度均有所下降,由处理前的39.41%分别降低至32.43%、31.57%、32.16%;当温度达120℃时,二醋酸纤维中部分氢键被破坏,纤维耐热性能、热稳定性有一定下降,但并不显著,纤维的表面形态、化学结构并未发生明显改变,拉伸断裂强力仍保持在3.20 cN左右。
In order to develop applications of supercritical CO2 technology in processing diacetate fibers,supercritical CO2 treatment to diacetate fibers at different temperatures was carried out.The fiber surface morphology,chemical structure,aggregation structure,thermal degradation property,thermal stability and tensile strength were investigated respectively by scanning electron microscope technology,infrared spectroscopy,X-ray diffraction,thermogravimetric analysis,differential scanning calorimetry and universal strength tester.The results indicate that the crystallinity of diacetate fibers decrease from 39.41%to 32.43%,31.57%and 32.16%respectively under different treatment temperatures(80,100,120℃).When the temperature is 120℃some hydrogen bonds in diacetate fibers are destroyed,and the thermal resistance and thermal stability of diacetate fibers decrease slightly,but the surface morphology and chemical structure of diacetate fibers are virtually unchanged,and tensile strength remains to be about 3.20 cN.
作者
朱维维
蔡冲
张聪
龙家杰
施楣梧
ZHU Weiwei;CAI Chong;ZHANG Cong;LONG Jiajie;SHI Meiwu(College of Textiles, Donghua University, Shanghai 201620, China;College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215000, China;National Scientific Research Base for Waterless Coloration with Supercritical Fluid, Soochow University, Suzhou, Jiangsu 215123, China;Institute of Quartermaster Engineering & Technology, Institute of System Engineering, Academy of Military Science, Beijing 100010, China)
出处
《纺织学报》
EI
CAS
CSCD
北大核心
2020年第3期8-14,共7页
Journal of Textile Research
关键词
超临界CO2
二醋酸纤维
表面形态
聚集态结构
热降解性能
热稳定性
拉伸断裂强力
supercritical CO2
diacetate fiber
surface morphology
aggregation structure
thermal degradation property
thermal stability
tensile strength