期刊文献+

基于数据处理与BP神经网络的SCR脱硝效率预测模型

SCR Denitration Efficiency Prediction Model Based on Data Processing and BP Neural Network
下载PDF
导出
摘要 基于数据处理与分析的方法,充分利用电厂DCS系统中存储的大量实际运行数据,以SCR系统相关参数为输入,SCR出口NOx浓度为输出,采用BP神经网络构建SCR脱硝系统预测模型。该模型充分考虑脱硝效率与其他变量的关系。实验结果表明模型预测结果可靠,为下一步脱硝系统优化运行、实现节能减排提供模型基础。 Based on the method of data processing and analysis,a large amount of actual data stored in the DCS of power plant are fully utilized.With relevant parameters of SCR system as input and NOx concentration at SCR outlet as output,BP neural network is used to construct the prediction model of SCR denitrification system.The model fully considers the relationship between denitrification efficiency and other variables.The experimental results show that the prediction results of the model are reliable,providing a model basis for the optimization of denitrification system in the next step and the realization of energy saving and emission reduction.
出处 《工业控制计算机》 2020年第2期49-50,共2页 Industrial Control Computer
关键词 SCR脱硝 数据处理 BP神经网络 参数预测 SCR denitration data processing BP neural network parameter prediction
  • 相关文献

参考文献2

二级参考文献8

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部