期刊文献+

基于领域对抗网络的轴承故障诊断方法研究 被引量:8

Fault diagnosis method for bearings based on domain adversarial neural networks
下载PDF
导出
摘要 在使用传统机器学习方法进行机械设备故障诊断过程中,因运行工况复杂多变无法满足测试数据和训练数据的同分布,导致模型诊断性能不高。针对这一问题,提出了一种基于领域对抗网络的设备变工况故障诊断方法。在卷积神经网络基础上,建立了包含特征提取器、故障分类器以及领域判别器的诊断模型,对测试与训练样本进行了分析处理,通过最小化故障分类器损失和最大化领域判别器损失,实现了对机械设备的故障诊断过程;通过在轴承试验台上进行了故障诊断模拟实验,将该方法诊断结果与其他故障诊断方法结果进行了对比,验证了该诊断模型对故障的识别能力。研究结果表明:该方法取得了96%以上的平均诊断准确率,在诊断过程中具有不受训练样本和测试样本差异影响的效果。 Aiming at the performance limitation of the mechanical equipment fault diagnosis,a method of fault diagnosis for equipment based on domain adversarial neural networks(DANN)was proposed.The accuracy of diagnosis was effected by the distribution of training and testing data due to the complex and changeable operating conditions when using traditional machine learning methods.Based on the convolutional neural networks,the diagnosis model was established consisting of feature extractor,fault classifier and domain discriminator.The diagnosis was conducted by minimizing the loss of fault classifier and maximizing the loss of domain discriminator.The fault identification ability was proved in the diagnosis experiments of bearing fault with the comparison of other methods.The results indicate that the proposed method has an average accuracy higher than 96%,and it is not affected by the differences between training and testing data.
作者 刘嘉濛 郑凡帆 梁丽冰 马波 LIU Jia-meng;ZHENG Fan-fan;LIANG Li-bing;MA Bo(Key Lab of Engine Health Monitoring Control and Networking of Ministry of Education,Beijing Universityof Chemical Technology,Beijing 100029,China;Beijing Key Laboratory of High End Mechanical EquipmentHealth Monitoring and Self Recovery,Beijing University of Chemical Technology,Beijing 100029,China)
出处 《机电工程》 CAS 北大核心 2020年第3期227-233,共7页 Journal of Mechanical & Electrical Engineering
基金 国家重点研发计划资助项目(2018YFB1503103)。
关键词 故障诊断 领域对抗网络 轴承故障 网络诊断 fault diagnosis domain adversarial neural networks(DANN) bearing fault network diagnosis
  • 相关文献

参考文献7

二级参考文献63

  • 1马海平,李雪,林升东.生物地理学优化算法的迁移率模型分析[J].东南大学学报(自然科学版),2009,39(S1):16-21. 被引量:46
  • 2于德介,程军圣,杨宇.Hilbert-Huang变换在齿轮故障诊断中的应用[J].机械工程学报,2005,41(6):102-107. 被引量:77
  • 3赵冲冲,廖明夫,于潇.基于支持向量机的旋转机械故障诊断。[J].振动.测试与诊断,2006,26(1):53-57. 被引量:21
  • 4FENG Z, ZUO M. Vibration signal models for faultdiagnosis of planetary gearboxes[J]. Journal of Sound andVibration, 2012,331: 4919-4939.
  • 5INALPOLAT M’ KAHRAMAN A. A theoretical andexperimental investigation of modulation sidebands ofplanetary gear sets[J]. Journal of Sound and Vibration,2009,323: 677-696.
  • 6FENG Z, LIANG M, CHU F. Recent advances intime-frequency analysis methods for machinery faultdiagnosis : A review with application examples[J].Mechanical Systems and Signal Processing, 2013, 38(1):165-205.
  • 7HLAWATSCH F, BARTELS G Linear and quadratictime-frequency signal representations[ J]. IEEETransactions on Signal Processing, 1992, 9(2): 21-67.
  • 8PENG Zhike,HE Yongyong, LU Qing,et al. Waveletmultifractal spectrum: Application to analysis vibrationsignals[J], Chinese Journal of Mechanical Engineering,2002, 15(8): 59-63.
  • 9ZOU J, CHEN J. A comparative study on time-frequencyfeature of cracked rotor by Wigner-Ville distribution andwavelet transform[J]. Journal of Sound and Vibration,2004,276(1-2): Ml.
  • 10AUGER F,FLANDRIN F. Improving the readability oftime-frequency and time-scale representations by thereassignment methodfJ]. IEEE Transaction on SignalProcessing, 1995,43; 1068-1089.

共引文献426

同被引文献83

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部