期刊文献+

无线传感器网络数据的个性化加权在线集成学习算法 被引量:3

Personalized Online Weighted Ensemble Learning Algorithm for Classifying Wireless Sensor Networks Data
下载PDF
导出
摘要 作为一种数据采集型网络,无线传感器网络有效地提高了人们获取客观物理信息的能力,已成为智慧生活的重要一环.然而,无线传感器网络数据是一种流数据,显著特点在于具有时间顺序性,实时性高,容易受外界因素干扰,且易产生分布漂移等特点.要利用无线传感器网络建立精确可靠的预测模型,就要兼容其上述特性.为此,本文提出了一种个性化加权在线集成算法,其个性化特征在于将集成中每个个体分类器的权重与样本集分布的相似性相关联,即当接收到一个新的数据块时,首先假定其符合多维高斯分布,进而计算其与之前数个数据块的K-L散度值,也即相似度,最后根据该值来确定各个数据块所对应分类器的投票权重.通过实验分析,该方法能够在线响应无线传感器网络数据流,且与传统的在线学习算法相比,具有更高的预测精度. As a data acquisition network,wireless sensor network has effectively improved the ability to obtain objective physical information,and has become an important part of intelligent life. However,wireless sensor network data is a kind of streaming data,which is characterized by time sequence,high real-time and distribution drift due to external factors. It is necessary to consider the characteristics above to construct an excellent predictive model for the wireless sensor data. In this article,we propose a personalized weighted online ensemble predictive algorithm. The core idea of this algorithm is to correlate the weight of each base classifier and the similarity of the instance distribution. When a new data chunk is received,we firstly assume it satisfy the multi-dimensional Gaussian distribution,further the K-L divergence,i. e.,the similarity,between it and each previous data chunk are calculated,finally according to the similarity to assign the weight for each base classifier. Based the analysis of experimental results,the algorithm can construct the better predictive model than some traditional ones.
作者 刘伟 王琦 于化龙 LIU Wei;WANG Qi;YU Hua-long(School of Computer Science,Jiangsu University of Science and Technology,Zhenjiang 212003,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2020年第3期497-501,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61305058,61572242)资助 江苏省自然科学基金项目(BK20130471)资助 中国博士后特别计划项目(2015T80481)资助 中国博士后科学基金项目(2013M540404)资助 江苏省博士后基金项目(1401037B)资助.
关键词 无线传感器网络 概念漂移 K-L散度 集成学习 加权投票 wireless sensor networks concept drift K-L divergence ensemble learning weighted voting
  • 相关文献

参考文献3

二级参考文献34

  • 1王鹏,吴晓晨,王晨,汪卫,施伯乐.CAPE——数据流上的基于频繁模式的分类算法[J].计算机研究与发展,2004,41(10):1677-1683. 被引量:7
  • 2杨宜东,孙志挥,张净.基于核密度估计的分布数据流离群点检测[J].计算机研究与发展,2005,42(9):1498-1504. 被引量:8
  • 3钱江波,徐宏炳,董逸生,王永利,刘学军,杨雪梅.基于最小生成树的数据流窗口连接优化算法[J].计算机研究与发展,2007,44(6):1000-1007. 被引量:3
  • 4S Muthukrishnan.Data streams:Algorithms and applications[C].The 14th Annual ACM-SIAM Symp on Discrete Algorithms,Baltimore,MD,USA,2003
  • 5H Wang,W Fan,P Yu,et al.Mining concept-drifting data streams using ensemble classifiers[C].The 9th ACM Int'l Conf on Knowledge Discovery and Data Mining (SIGKDD),Washington,2003
  • 6Q H Xie.An efficient approach for mining concept-drifting data streams:[Master dissertation][D].Tainan,China:National University of Tainan,2004
  • 7M Guetova,Holldobter,H V Storr.Incremental fuzzy decision trees[C].The 25th German Conf on Artificial Intelligence(KI2002),Aachen,Germany,2002
  • 8V Ganti,J Gehrke,R Ramakrishnan.Mining data streams under block evolution[J].SIGMOD Explorations,2002,3(2):1-10
  • 9J Han,M Kamber.Data Mining:Concepts and Techniques[M].San Francisco:Morgan Kaufmann,2001
  • 10D Kifer,S Ben-David,J Gehrke.Detecting change in data streams[G].In:Proc of VLDB 2004.San Francisco:Morgan Kaufmann,2004

共引文献51

同被引文献36

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部