期刊文献+

GPR40激动剂作用方式及药效团模型研究 被引量:4

Study on the mode of action and pharmacophore model of GPR40 agonists
下载PDF
导出
摘要 为阐明GPR40与其激动剂分子之间的相互作用方式,构建可用于GPR40激动剂分子先导化合物筛选的药效团模型。我们利用分子对接技术将GPR40与其激动剂分子进行对接,分析分子与受体之间相互作用的关键氨基酸和结合方式,采用药团模型法分别构建了基于受体 配体复合物(CBP)和基于激动剂分子共同特征(HipHop)的药效团模型,HipHop模型采用测试集法进行验证。结果显示GPR40与小分子相互作用的关键氨基酸主要有ARG183、TYR91、TYR2240、ARG2258、PHE142等,相互作用方式则主要为氢键、盐桥、Pi-Pi Stacking以及疏水作用,以药团模型法构建了10个HipHop模型,其中8号药效团为最优模型,可用于GPR40激动剂分子的虚拟筛选研究,这为GPR40激动剂药物分子设计奠定了理论基础。 To elucidate the interaction between GPR40 and its agonist molecules,and to construct a pharmacophore model for screening GPR40 agonist molecular lead compounds.We using molecular docking technology to dock GPR40 with its agonist molecules,and analyze the key amino acids and combinations of interactions between molecules and receptor,the Receptor-Ligand Pharmacophore model(CBP)and Common Feature Pharmacophore model(HipHop)were constructed using the pharmacophore modeling method,the HipHop model is validated by test set method.The results show that the key amino acids interacting with GPR40 and small molecules are ARG183,TYR91,TYR2240,ARG2258,PHE142,etc,the interaction modes are mainly hydrogen bonding,salt bridge,Pi-Pi Stacking and hydrophobic interaction,ten HipHop models were constructed by the pharmacophore modeling method,in which the No.8 pharmacophore was the optimal model,it can be used for the virtual screening studies for GPR40 agonist molecules,which lays a theoretical foundation for the molecular design of GPR40 agonist drugs.
作者 靳京妹 宋昱 于大永 曹洪玉 史丽颖 JIN Jing-mei;SONG Yu;YU Da-yong;CAO Hong-yu;SHI Li-ying(Dalian University School of Life Science and Technology,Dalian 116622,China)
出处 《化学研究与应用》 CAS CSCD 北大核心 2020年第3期386-393,共8页 Chemical Research and Application
关键词 GPR40 HipHop 药效团模型 GPR40 HipHop pharmacophore model
  • 相关文献

参考文献1

二级参考文献20

  • 1金玉青,洪远林,李建蕊,李曦,王晓晓,吕光华.川芎的化学成分及药理作用研究进展[J].中药与临床,2013,4(3):44-48. 被引量:382
  • 2韩建香,孙向红,宫丽莉,王路平.川芎治疗心脑血管疾病的药理学研究进展[J].齐鲁医学杂志,2005,20(4):375-376. 被引量:15
  • 3Ru J, Li P, Wang J, et al. TCMSP: a database of systems phar- macology for drug discovery from herbal medicines [J]. J Chem- inform,2014, 6( 1 ) : 1.
  • 4Davis A P, Grondin C J, Lennon-Hopkins K, et al. The compar- ative toxicogenomics database' s 10th year anniversary: update 2013 [J]. Nucleic AcidsRes, 2013,42(D1): D1101.
  • 5Law V, Djoumbou Y, Jewison T, et al. DrugBank 4.0: shed- d!ng new light on drug metabolism [ J]. Nucleic Acids Res, 2014, 42(D1) : D1091.
  • 6Moreland J L, Gramada A, Buzko O V, et al. The moleclar biolo- gy toolkit(MBT) : a modular platform for developing molecular vi- sualization applications[J]. BMC Bioinform, 2005, 6( 1 ):6.
  • 7Wang S, Li Y, Wang J, et al. ADMET evaluation in drug dis- covery. 12. Development of binary classification models for pre- diction of hERG potassium channel blockage [ J]. Mol Pharm, 2012, 9(4) : 996.
  • 8Diller D J, Merz K M Jr. High throughput docking for library de- sign and library prioritization [ J ] . Proteins, 2001, 43 ( 2 ) : 113.
  • 9Gaulton A, Bellis L J, Bento A P, et al. ChEMBL: a large-scale bioactivity database for drug discovery [ J]. Nucleic Acids Res, 2012, 40(D1) : D1100.
  • 10Feng D, Yan Zhou, Min Xia, et al. Folic acid inhibits lipopo- lysaceharide-induced inflammatory response in RAW264.7 mac- rophages by suppressing MAPKs and NF-KB activation [ J]. In- ftam Res, 2011,60(9) : 817.

共引文献35

同被引文献38

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部