期刊文献+

基于Q-learning的分布式自适应拓扑稳定性算法 被引量:3

Q-Learning Based Distributed Adaptive Algorithm for Topological Stability
下载PDF
导出
摘要 针对移动节点对网络拓扑稳定性的影响,提出了一种预测相邻节点稳定联接的自适应分布式强化学习算法。各节点采用强化学习和学习区间自适应划分相结合的方法,利用相邻节点间的接收信号强度信息对相邻节点间的联接状态进行判定,最终预测出能够保持稳定联接的邻居节点集。通过多种条件下随机游走模型仿真,结果表明预测准确度均保持在95%左右,验证了该算法的有效性和稳定性。 Aiming at the influence of mobile nodes on network topological stability,an adaptive distributed reinforcement learning algorithm is proposed to predict the stable connection of adjacent nodes.Each node uses the method of combining reinforcement learning with adaptive division of learning intervals,uses the received signal strength information between adjacent nodes to determine the connection state between adjacent nodes,and finally predicts the set of neighbor nodes that can maintain stable connection.The simulation results of random walk model under various conditions show that the prediction accuracy is about 95%,which verifies the effectiveness and stability of the algorithm.
作者 黄庆东 石斌宇 郭民鹏 袁润芝 陈晨 HUANG Qing-dong;SHI Bin-yu;GUO Min-peng;YUAN Run-zhi;CHEN chen(Informations and Communications Technology of National Experimental Teaching Center,School of Communication and Information Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121)
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2020年第2期262-268,共7页 Journal of University of Electronic Science and Technology of China
基金 国家科技重大专项(2017ZX03001012-005) 陕西省教育厅科学研究计划(17JK0693) 陕西省重点科技创新团队计划(2017KCT-30-02)。
关键词 分布式 移动自组织网络 强化学习 拓扑稳定性 distributed mobile Ad hoc networks reinforcement learning topological stability
  • 相关文献

参考文献2

二级参考文献18

  • 1Huang Qiang,Yokoi K,Kajita S.Planning Walking Patterns for a Biped Robot[J].IEEE Trans.on Robotics and Automation,2001,17(3):280-289.
  • 2Collins S,Wisse M,Ruina A.A Three-dimensional Passive-dynamic Walking Robot with Two Legs and Knees[J].Inter-national Journal of Robotics Research,2001,20(7):607-615.
  • 3Marina L,Sloan R.Reinforcement Learning via Approximation of the Q-function[J].Journal of Experimental and Theoretical Arti-ficial Intelligence,2010,22(3):219-235.
  • 4梶田秀司.类人机器人[M].管贻生,译.北京:清华大学出版社,2007.
  • 5LuoJ H, YeDX, XueL, FanMY. Asurveyofmulticast routing protocols for mobile Ad-Hoc networks. IEEE Com- munications Surveys g~ Tutorials, 2009, 11(1): 78-91.
  • 6Torkestani J Akbari, Meybodi M Reza. Mobility-based mul- ticast routing algorithm for wireless mobile Ad-hoc net- works: A learning automata approach. Computer Communi- cations, 2010, 33(6): 721-735.
  • 7Dube R, Rais C D, Wang K Y, et al. Signal stability based adaptive routing for Ad Hoc mobile networks. IEEE Personal Communication, 1997, 4(1): 36-45.
  • 8Sarma N, Nandi S. Route stability based QoS routing in mo- bile Ad Hoc networks. Wireless Personal Communications, 2009, 54(1): 203-224.
  • 9Su W, Lee S J, Gerla M. Mobility prediction and routing in ad-hoc wireless networks. International Journal of Network Management, 2001, 11(1): 3-30.
  • 10Guo S, Yang O. Maximizing multicast communication life- time in wireless mobile ad-hoc networks. IEEE Transactions on Vehicular Technology, 2008, 57(4): 2414-2425.

共引文献35

同被引文献30

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部