摘要
针对移动节点对网络拓扑稳定性的影响,提出了一种预测相邻节点稳定联接的自适应分布式强化学习算法。各节点采用强化学习和学习区间自适应划分相结合的方法,利用相邻节点间的接收信号强度信息对相邻节点间的联接状态进行判定,最终预测出能够保持稳定联接的邻居节点集。通过多种条件下随机游走模型仿真,结果表明预测准确度均保持在95%左右,验证了该算法的有效性和稳定性。
Aiming at the influence of mobile nodes on network topological stability,an adaptive distributed reinforcement learning algorithm is proposed to predict the stable connection of adjacent nodes.Each node uses the method of combining reinforcement learning with adaptive division of learning intervals,uses the received signal strength information between adjacent nodes to determine the connection state between adjacent nodes,and finally predicts the set of neighbor nodes that can maintain stable connection.The simulation results of random walk model under various conditions show that the prediction accuracy is about 95%,which verifies the effectiveness and stability of the algorithm.
作者
黄庆东
石斌宇
郭民鹏
袁润芝
陈晨
HUANG Qing-dong;SHI Bin-yu;GUO Min-peng;YUAN Run-zhi;CHEN chen(Informations and Communications Technology of National Experimental Teaching Center,School of Communication and Information Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121)
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2020年第2期262-268,共7页
Journal of University of Electronic Science and Technology of China
基金
国家科技重大专项(2017ZX03001012-005)
陕西省教育厅科学研究计划(17JK0693)
陕西省重点科技创新团队计划(2017KCT-30-02)。
关键词
分布式
移动自组织网络
强化学习
拓扑稳定性
distributed
mobile Ad hoc networks
reinforcement learning
topological stability