期刊文献+

Kobayashi’s and Teichmuller’s Metrics and Bers Complex Manifold Structure on Circle Diffeomorphisms 被引量:1

Kobayashi’s and Teichm¨uller’s Metrics and Bers Complex Manifold Structure on Circle Diffeomorphisms
原文传递
导出
摘要 Given a modulus of continuity ω,we consider the Teichmuller space TC1+ω as the space of all orientation-preserving circle diffeomorphisms whose derivatives are ω-continuous functions modulo the space of Mobius transformations preserving the unit disk.We study several distortion properties for diffeomorphisms and quasisymmetric homeomorphisms.Using these distortion properties,we give the Bers complex manifold structure on the Teichm(u| ")ller space TC^1+H as the union of over all0 <α≤1,which turns out to be the largest space in the Teichmuller space of C1 orientation-preserving circle diffeomorphisms on which we can assign such a structure.Furthermore,we prove that with the Bers complex manifold structure on TC^1+H ,Kobayashi’s metric and Teichmuller’s metric coincide. Given a modulus of continuity ω,we consider the Teichmuller space TC1+ω as the space of all orientation-preserving circle diffeomorphisms whose derivatives are ω-continuous functions modulo the space of Mobius transformations preserving the unit disk.We study several distortion properties for diffeomorphisms and quasisymmetric homeomorphisms.Using these distortion properties,we give the Bers complex manifold structure on the Teichm(u| ")ller space TC1+H as the union of over all0 <α≤1,which turns out to be the largest space in the Teichmuller space of C1 orientation-preserving circle diffeomorphisms on which we can assign such a structure.Furthermore,we prove that with the Bers complex manifold structure on TC1+H,Kobayashi’s metric and Teichmuller’s metric coincide.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2020年第3期245-272,共28页 数学学报(英文版)
基金 supported by the National Science Foundation supported by a collaboration grant from the Simons Foundation(Grant No.523341) PSC-CUNY awards and a grant from NSFC(Grant No.11571122)。
关键词 Bers complex manifold STRUCTURE circle DIFFEOMORPHISM modulus of continuity quasisymmetric circle HOMEOMORPHISM Teichmuller space Kobayashi's METRIC Teichmuller's METRIC Bers complex manifold structure circle diffeomorphism modulus of continuity quasisymmetric circle homeomorphism Teichm¨uller space Kobayashi’s metric Teichm¨uller’s metric
  • 相关文献

参考文献2

二级参考文献13

  • 1Royden, H.: Automorphisms and isometries of Teichmiiller space. In: Advances in the Theory of Riemann Surfaces, 1969 Stony Brook Conference, Ann. of Math. Studies, 66, 369-383, Princeton Univ. Press, Princeton, 1971.
  • 2Gaxdiner, F. P.: Approximation of infinite dimensional Teichmiiller spaces. Trans. Amer. Math. Soc., 282(1), 367-383 (1984).
  • 3Gardiner, F. P.: Teichm/iller Theory and Quadratic Differentials, John Wiley & Sons, New York, 1987.
  • 4Earle, C. J., Kra, I., Krushkal, S. L.: Holomorphic motions and Teichmiiller spaces. Trans. Amer. Math. Soc., 343(2), 927-948 (1994).
  • 5Gardiner, F. P., Sullivan, D. P.: Symmetric structures on a closed curve. Amer. J. Math., 114, 683-736 (1992).
  • 6Gardiner, F. P., Lakic, N.: Quasiconformal Teichmiiller Theory, AMS, Providence, Rhode Island, 2000.
  • 7Earle, C. J., Gardiner, F. P., Lakic, N.: Aymptotic Teichmfiller space, Part II: The metric structure. Contemp. Math., 355, 187-220 (2004).
  • 8Gardiner, F. P., Jiang, Y., Wang, Z.: Holomorphic motions and related topics, Geometry of Riemann Surfaces, 166-203, London Math. Society Lecture Notes Series, 368, Cambridge Univ. Press, Cambridge, 2010.
  • 9Beurling, A., Ahlfors, L. V.: The boundary correspondence for quasiconformal mappings. Acta Math., 96, 125-142 (1956).
  • 10Ahlfors, L. V.: Lectures on Quasiconformal Mapping, Volume 38 of University Lecture Series, Amer. Math. Soc., Providence, RI, 2006.

共引文献2

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部