摘要
文章主要研究了一类子群非互素图,给出了有限群G的子群非互素图的定义,群G是一个有限群,G的子群非互素图Γ2G。为以G的非单位真子群为顶点,Γ2G中的两个顶点A,B相连当且仅当(|A|,|S|)≠1。通过研究得到有限群的子群非互素图的连通性的条件。
A class of connectivity of the subgroup non-coprime graph is studied in the paper and the definition of subgroups of finite group G is given.G is a finite group,whose subgroup non-coprime graph Γ2G is the graph with vertices of the non-identity proper subgroup and two distinct vertices A and B adjacent when(|A|,|B|)≠1.Thus the conditions for the connectivity of the subgroups of finite groups are obtained.
作者
张花连
蔡江华
刘太德
ZHANG Hua-lian;CAI Jiang-hua;LIU Tai-de(School of Primary Education,Pingxiang University,Pingxiang Jiangxi 337000,China)
出处
《萍乡学院学报》
2019年第6期13-15,21,共4页
Journal of Pingxiang University
基金
江西省教育厅科学技术研究项目(GJJ191158)
萍乡学院青年科研基金项目(2019D0209)。
关键词
有限群
子群非互素图
连通性
finite group
the subgroup non-coprime graph
connectivity