摘要
针对不同分布噪声下生成对抗网络生成样本质量差异明显的问题,提出了一种噪声稳健性的卡方生成对抗网络。所提网络结合了卡方散度量化敏感性和稀疏不变性的优势,引入卡方散度计算生成样本分布和真实样本分布的距离,减小不同噪声对生成样本的影响且降低对真实样本的质量要求;搭建了网络架构,构建全局优化目标函数,促进网络不断优化并增强博弈的有效性。实验结果表明,所提网络在不同噪声下的生成样本质量和稳健性优于目前几种主流网络,且图像质量差异较小。卡方散度的引入不仅提高了生成样本质量,而且提升了网络在不同噪声下的稳健性。
Aiming at the obvious difference of image quality generated by generative adversarial network under different noises,a chi-square generative adversarial network(CSGAN)was proposed.Combing the advantages of quantification sensitivity and sparse invariance,the chi-square divergence was introduced to calculate the distance between the generated samples and the original samples,which could reduce the influence of different noises on the generated samples and the quality requirement of original samples.Meanwhile,the network architecture was built and the global optimization objective function was constructed to enhance the adversarial performance.Experimental results show that the quality of the images generated by the proposed algorithm has little difference,and the network is more robust to different noises than the state-of-the-art networks.The application of chi-square divergence not only improves the quality of generated images,but also increases the robustness of the network under different noises.
作者
李洪均
李超波
张士兵
LI Hongjun;LI Chaobo;ZHANG Shibing(School of Information Science and Technology,Nantong University,Nantong 226019,China;State Key Laboratory for Novel Software Technology,Nanjing University,Nanjing 210093,China;Research Center for Intelligent Information Technology,Nantong University,Nantong 226019,China;TONGKE School of Microelectronics,Nantong University,Nantong 226019,China)
出处
《通信学报》
EI
CSCD
北大核心
2020年第3期33-44,共12页
Journal on Communications
基金
国家自然科学基金资助项目(No.61871241)
教育部产学研合作协同育人基金资助项目(No.201802302115)
中国交通教育研究会教育科学研究课题基金资助项目(No.交教研1802-118)
南通市科技计划资基金助项目(No.JC2018025,No.JC2018129)
南通大学-南通智能信息技术联合研究中心基金资助项目(No.KFKT2017B04)
南京大学计算机软件新技术国家重点实验室基金资助项目(No.KFKT2019B15)
江苏省研究生科研与实践创新计划基金资助项目(No.KYCX19_2056)。
关键词
生成对抗网络
卡方散度
噪声分布
图像质量
generative adversarial network
chi-square divergence
noise distribution
image quality