期刊文献+

基于循环载荷法评价聚乙烯管材性能的可靠性研究 被引量:5

Evaluation of Performance Reliability for Polyethylene Pipe by Cyclic Loading Method
下载PDF
导出
摘要 为研究循环载荷法对加速表征聚乙烯(PE)管材耐慢速裂纹扩展(SCG)性能的可靠性,对5种不同等级的PE管材采用循环载荷缺口圆棒(CRB)试验和全切口拉伸蠕变(FNCT)试验的方法对其耐慢速裂纹扩展性能进行评估,同时对其试验结果进行相关性分析。此外,通过测量PE管材的分子量及其分布、结晶度和片晶厚度等高分子材料参数进一步佐证所选PE管材耐慢速裂纹扩展性能的优劣,进而验证CRB试验方法的可靠性。结果表明,循环载荷CRB试验方法不仅能可靠有效评估PE管材的耐SCG性能,且相比FNCT试验方法,其试验所需时长更短及试验条件要更贴近实际使用工况。 To investigate the performance reliability of polyethylene(PE)pipe under the slow crack growth(SCG)condition,five different graded PE pipes were selected for the evaluation of SCG resistance by a cyclic load gap(CRB)test and a full-notch tensile creep test(FNCT),and the correlation of experimental results was analyzed. Moreover,the macromolecular structural parameters of PE pipes including molecular weight and distribution,crystallinity and wafer thickness were investigated to further verify the performance reliability of selected PE tubes under the SCG condition,and meanwhile the reliability of CRB test method was also confirmed. The results indicated that the CRB test method not only could be used to reliably and effectively evaluate the SCG resistance of PE pipes,but also revealed a shorter test time and closer test conditions than the FNCT.
作者 杨波 何嘉平 翟伟 向健平 王志刚 左晓锋 YANG Bo;HE Jiaping;ZHAI Wei;XIANG Jianping;WANG Zhigang;ZUO Xiaofeng(Guangzhou Special Pressure Equipment Inspection And Research Institute,Guangzhou 510663,China;School of Energy and Power Engineering,Changsha University of Science&Technology,Changsha 410114,China)
出处 《中国塑料》 CAS CSCD 北大核心 2020年第3期54-61,共8页 China Plastics
基金 广东省质量监督局科技项目(NO.2017CT15)。
关键词 聚乙烯管材 耐慢速裂纹增长 快速评价 对比分析 polyethylene pipe slow crack growth resistance rapid evaluation contrastive analysis
  • 相关文献

参考文献2

二级参考文献17

  • 1杨文涛.HDPE管材行业的发展[J].合成树脂及塑料,2006,23(3):80-83. 被引量:7
  • 2HeinerB.PEl00管道系统[M].魏若奇,者东梅,等译.北京:中国石化出版社,2011:18-24.
  • 3Pyo S, Nam J, Kim Y, et al.Utilization of notched ring test for larger diameter pipes and fittings[C]//Proceedings of the Plastics Pipes XV Conference, Vancouver: [s.n.], 2010.
  • 4Hessel J.Minimum service-life of buried polyethylene pipes without sand-embedding part 1: service experiences, concept for loading, material technology limiting conditions[J].3R International, 2001, 40 (4) : 178-184.
  • 5Hessel J.Minimum service-life of buried polyethylene pipes without sand-embedding part 2. Results of investigations: minimum life[J].3R International. 2001, 40 (6) : 360-366.
  • 6Kurelec L, Teeuwen M, Schoffeleers H, et al. Strain hardening modulus as a measure of environmental stress crack resistance of high density polyethylene[J]. Polymer, 2005, 46 (17) : 6369-6379.
  • 7McCarthy M, Deblieck R, Mindermann P, et al. New accelerated method to determine slow crack growth behavior of polyethylene pipe materials[C]//Proceedings of the Plastics Pipes 14 Conference, Budapest: [s.n.], 2008.
  • 8Laurent E, Haubruge H, Belloir P.Polyethylene will grow with non-conventional pipe installation techniques: PE100-RC development milestones & perspectives[C]//Proceedings of the Plastics Pipes 15 Conference, Vancouver: [s.n.], 2010.
  • 9Hessel J.PE-pipe installation without sand-embedding-a matter of pipe quality[J]. BBR, 2003, 54 (9) : 61-65.
  • 10Nonhoff S, Hessel J.PE pressure pipes made from PE 100-RC: design and calculation of gas or water pipelines for a minimum service life of 100 years[C]//Conference Paper Plastic Pressure Pipes, Cologne: [s.n.], 2009.

共引文献16

同被引文献62

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部