期刊文献+

融合多特征图的野生动物视频目标检测方法 被引量:7

Wild Animal Video Object Detection Method Combining Multi-feature Map
下载PDF
导出
摘要 针对YOLOv3在野生动物视频目标检测领域中,存在的前后视频帧同区域关系难以描述的缺点,提出了Context-aware YOLO模型。该模型使用互信息熵对相邻帧的图像相似度进行量化,根据量化结果拟合出帧融合的相关因子,并使用相关因子对视频前后帧的特征图进行线性迭代融合;引入直方图均衡计算相似度的方法,判断"镜头切换"的情况,以确定特征图融合的临界条件。实验结果表明,Context-aware YOLO模型相对于YOLOv3模型F1值提升了2.4%,平均准确率(mAP)提升了4.71%。 Aiming at the disadvantage of YOLOv3 in the field of wildlife video target detection, it is difficult to describe the relationship between the front and back video frames and the region, the Context-aware YOLO model is proposed.The model uses mutual information entropy to quantize the image similarity of adjacent frames, fits the correlation factor of frame fusion according to the quantization result, and uses the correlation factor to linearly iterate the feature map of the video before and after the frame;the histogram equalization method is introduced to calculate the similarity and judge the situation of "shot switching" to determine the critical condition of feature map fusion. The experimental results show that the Context-aware YOLO model has an increase of 2.4% over the F1 value of the YOLOv3 model, and the average accuracy(mAP)has increased by 4.71%.
作者 陈建促 王越 朱小飞 李章宇 林志航 CHEN Jiancu;WANG Yue;ZHU Xiaofei;LI Zhangyu;LIN Zhihang(Chongqing University of Technology,School of Computer Science and Engineering,Chongqing 400054,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第7期221-227,共7页 Computer Engineering and Applications
基金 国家自然科学青年基金(No.61702063) 重庆市基础科学与前言技术研究重点专项(No.cstc2017jcyjBX0059)。
关键词 YOLOv3模型 视频目标检测 互信息熵 线性迭代 直方图均衡 YOLOv3 model video object detection mutual information entropy linear iteration histogram equalization
  • 相关文献

参考文献3

二级参考文献40

  • 1韩嵩,刘俊昌.野生动物资源负价值的评价方法研究[J].西北林学院学报,2008,23(5):144-147. 被引量:3
  • 2康西北.野生动物的价值[J].新疆林业,1999,0(4):25-25. 被引量:1
  • 3韩嵩,刘俊昌,王红英,陈文汇.野生动物资源经济价值评价探讨[J].林业资源管理,2007(2):91-95. 被引量:8
  • 4苏广实.自然资源价值及其评估方法研究[J].学术论坛,2007,30(4):77-80. 被引量:15
  • 5Khellaf A, Beghdadi A, Dupoiset H. Entropic contrast enhance- ment[ J]. IEEE Transactions on Medical Imaging, 1991,10(4) : 589 - 592.
  • 6Kim Y L. Contrast enhancement using brightness preserving bi- histogram equalization [ J]. IEEE Transactions on Consumer Electronics, 1997,43( 1 ) : 1 - 8.
  • 7CaseUes V, Lisani J L, Morel J M, Sapiro G. Shape preserving local histogram modification [ J ]. IEEE Transactions on Image Processing, 1999,8 (2) : 220 - 230.
  • 8Wang C, Ye Z. Brightness preserving histogram equalization with maximum entropy: A variational perspective [ J ]. IEEE Transactions Consumer Electronics, 2005,51 (4) : 1326 - 1334.
  • 9Sheet D, Garud H, Suyeer A, et al. Brightness preserving dy- namic fuzzy histogram equalization [ J]. IEEE Transactions on Consumer Electronics, 2010,56(4) : 2475 - 2480.
  • 10Arici T, Dikbas S, Altunbasak Y. A histogram modification framework and its application for image contrast enhancement [ J ]. IEEE Transactions on Image Processing, 2009, 18 (9) : 1921 - 1935.

共引文献121

同被引文献98

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部