期刊文献+

包虫病多宿主传播的数学建模及动力学分析

Mathematical Modeling and Dynamic Analyzing of Multi-homing Echinococcosis Transmit
下载PDF
导出
摘要 建立了一类具有标准发生率的包虫病动力学模型,证明了相关稳定性结论,并进行了包虫病控制策略的数值仿真。利用李雅普诺夫函数法证明得到模型在基本再生数R0<1时,无病平衡点全局渐进稳定,R0>1且(σ+c)I1^*≤μ1S1^*时,地方病平衡点全局渐近稳定。利用文献中的数据对模型进行敏感性分析,结果表明,羊染病率对包虫病的传播影响较大。最后对控制策略进行评价,结果表明综合控制是最经济有效的方法。 In this paper,a class of Echinococcosis dynamics model with standard incidence was established;relative stability conclusion was verified;and mathematical simulation of Echinococcosis controlling strategy was carried on.It was proved by using the Lyapunov function method that when the basic reproductive number R0<1,disease-free equilibrium globally asymptotically stable;and when the basic reproductive number R0>1 and(σ+c)I1^*≤μ1S1^*,the endemic equilibrium global asymptotic stability.Sensitivity analysis of models was carried out by using data from the literature,the results showed that the transmission rate from dog to livestock had great influence on the transmission of Echinococcosis.Finally,the control strategy was evaluated,the results showed that complex control was most economical and feasible.
作者 林雅荔 周林华 马文联 王帅 吕堂红 LIN Ya-li;ZHOU Lin-hua;MA Wen-lian;WANG Shuai;LV Tang-hong(School of Science,Changchun University of Science and Technology,Changchun 130022)
出处 《长春理工大学学报(自然科学版)》 2020年第1期133-138,共6页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 吉林省教育厅“十三五”科学技术研究项目(JJKH20181100KJ)。
关键词 包虫病 传染病动力学 数值模拟 echinococcosis transmission dynamics numerical simulation
  • 相关文献

参考文献5

二级参考文献29

  • 1马知恩,周义仓,主编.传染病动力学的数学建模与研究[M].北京:科学出版社,2003.
  • 2Yu Rong Yang. Echinococcosis in Ningxia Hui Autonomous Region, northwest China[J]. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2008, 102(4): 319-328.
  • 3Philip S. Craig. Epidemiology of human alveolar echinococcosis in China[J]. Parasitology International, 2006, 55(1): 221-225.
  • 4Roberts M G, Lawson JR, Gemmell MA. Population dynamics of echinococcosis and cysticercosis: mathe- matical model of the life cycles of Taenia hydatigena and Taen'ia ovis[J]. Parasitology, 1987, 94(Pt 1):181-197.
  • 5Hirofumi Ishikawa. Mathematical modeling of Echinococcus multilocularis transmission[J]. Parasitology International, 2006, 55(1): 259-261.
  • 6Torgerson P R. The use of mathematical models to simulate control options for echinococcosis[J]. Acta Tropica, 2003, 85(2): 211-221.
  • 7Roberts M G, Aubert M F A. A model for the control of Echinococcus multilocularis in France[J]. Veterinary Parasitology, 1995, 56(1-3): 67-74.
  • 8Shigui Ruan, Don gmei Xiao, John C. Beier. On the Delayed Ross+Macdonald Model for Malaria Transmission[J]. Bulletin of Mathematical Biology, 2008, 70:1098 1114.
  • 9Anderson R, May T. Infectious Diseases of Human: Dynamics and Control[M]. Oxford: Oxford University Press, 1991.
  • 10Wang S, Ye S. Textbook of medical microbiology and parasitology[M]. Science Press, Beijing, 2006.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部