期刊文献+

基于区间预测模型的污水处理厂传感器故障检测 被引量:2

Fault Detection of Sensors in Wastewater Treatment Plants Using Interval Predictor Models
下载PDF
导出
摘要 污水处理厂配备许多传感器用于监测出水水质。传感器的正常工作与否对保证出水水质至关重要。给出了一种污水处理出水变量传感器故障检测方法。该方法根据入水和出水数据,采用径向基函数神经网络构造出水变量预测模型;使用参数线性集员辨识算法得到网络输出权值的集合描述,从而使预测模型能够给出出水变量的置信区间;以此置信区间为基础获得传感器的故障检测策略。由于置信区间描述了出水变量的存在范围,当传感器测量值超出置信区间,则可推断传感器发生故障。此外,在设计传感器故障检测策略时还考虑了污水处理过程异常的影响。实验结果证实所提方法的有效性。 A wastewater treatment plant(WWTP)is equipped with a number of sensors for monitoring the quality of the effluent.The normal operation of the sensors is critical to ensuring the quality of the effluent.This paper presents a fault detection method for sensors measuring the effluent variables in the WWTP.According to the available influent and effluent data,the radial basis function neural network is used to construct the predictor models for the effluent variables.Linear-in-parameters set membership identification algorithm is used to obtain a description of the uncertain set of the vector representing the output weights of the neural network,so that the predictor model can give a confidence interval of the effluent variable.Basing on this confidence interval,the sensor fault detection strategy is obtained.Since the confidence interval describes the existence range of the effluent variable,when the measurement result exceeds the confidence interval,it can be inferred that the sensor has been faulty.Besides,the influence of abnormal operation of the WWTP is considered in designing the sensor fault detection strategy.The experimental results confirm the effectiveness of the proposed method.
作者 柴伟 池彬彬 CHAI Wei;CHI Bin-bin(Faculty of Information Technology,School of Automation,Beijing University of Technology,Beijing 100124,China;Beijing Key Laboratory of Computational Intelligence and Intelligent Systems,Beijing 100124,China)
出处 《计算技术与自动化》 2020年第1期23-28,共6页 Computing Technology and Automation
基金 北京市自然科学基金资助项目(4144067) 矿冶过程自动控制技术国家和北京市重点实验室开放课题(BGRIMM-KZSKL-2018-06)。
关键词 污水处理 传感器 故障检测 集员辨识 区间预测 wastewater treatment sensor fault detection set membership identification interval prediction
  • 相关文献

参考文献3

二级参考文献15

  • 1朱全民.非线性系统辨识[J].控制理论与应用,1994,11(6):641-652. 被引量:18
  • 2柴伟,孙先仿.一种非线性系统集员辨识算法[J].北京航空航天大学学报,2005,31(11):1237-1240. 被引量:3
  • 3SJ(O)BERG J, Zhang Q H, Ljung L, et al. Nonlinear black-box modeling in system identification: a unified overveiw[J]. Automafica, 1995, 31(12):1691 - 1702.
  • 4SimonHaykin.神经网络原理[M](第二版)[M].北京:机械工业出版社,2004.213-218.
  • 5Tan S H, Hao J B, Vandevalle J. Nonlinear systems identification using RBF neural networks[A]. In: Proceedings of 1993 International Joint Conference on Neural Networks[C]. Nagoya, 1993. 1833-1836.
  • 6Fogel E, Huang Y F. On the value of information in system identification-bounded noise case[J]. Automatica, 1982, 18(2) :229 - 238.
  • 7Norton J P. Identification of parameter-bounds for ARMAX models from records with bounded noise[J]. International Journal of control,1987,45(2) :375 - 390.
  • 8Befforte G, Bona B. An improved parameter identification algorithm for signals with unknown but bounded errors[A]. In:7th IFAC/IFORS Symposium on Identification and System Parameter Estimation[C]. York,1985,1507 - 1511
  • 9王旭东,邵惠鹤.RBF神经元网络在非线性系统建模中的应用[J].控制理论与应用,1997,14(1):59-66. 被引量:68
  • 10柴伟,孙先仿.集员估计的加权最小二乘支持向量机方法[J].电机与控制学报,2009,13(3):431-435. 被引量:2

共引文献8

同被引文献24

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部