摘要
磁信标定位技术在现代定位领域中显示出越来越重要的作用,为确定磁信标的最佳设计结构,用Comsol Mutiphysics软件对不同结构的磁信标产生的三维磁场进行了有限元分析,讨论了磁信标的材料、结构、形状等参数不同时磁场强度的性能并对其进行优化设计。在此基础上分别研究了单、正交、阵列永磁体磁信标及单、正交螺线管磁信标的场强特性,使用MATLAB软件对不同结构磁信标的场强大小及稳定性进行了仿真模拟,得出对永磁体磁信标来说,正交组合磁信标产生的磁场稳定性更好,对螺线管来说,加磁芯的正交螺线管磁场强度稳定性较好,适用于高精度磁信标定位系统。不同阵列磁信标的最佳基线长度不同,产生的磁场强度约为组合磁信标的倍数,但随着距离的增加磁场变化率较大造成场强分布不稳定,适用于误差容错较高的磁信标定位系统。
Magnetic beacon localization technology has become more and more important in the modern positioning field. To determine the optimal design structure of magnetic beacons,Comsol Mutiphysics software is used to perform finite element analysis on the three-dimensional magnetic field generated by magnetic beacons of different structures. The performance of the magnetic field strength of the three-dimensional magnetic beacon with different parameters such as material,structure and shape are discussed and optimized. On this basis,the field strength characteristics of single,orthogonal,array permanent magnet magnetic beacons and single and orthogonal solenoid magnetic beacons are studied. The field strength and stability of different structural magnetic beacons are analyzed by MATLAB software. The simulation shows that the magnetic field generated by the orthogonal combined magnetic beacon with magnetic core is better,and it is suitable for high-precision magnetic beacon positioning system. The optimal baseline length of different array magnetic beacons is different,and the generated magnetic field strength is about a multiple of the combined magnetic beacon. However,as the distance increases,the magnetic field change rate causes the field intensity distribution to be unstable,which is suitable for magnetic beacons with high error tolerance target positioning system.
作者
王润
杨宾峰
孙欢
管桦
WANG Run;YANG Binfeng;SUN Huan;GUAN Hua(School of Information and Navigation,Air Force Engineering University,Xi’an 710000,China)
出处
《传感技术学报》
CAS
CSCD
北大核心
2020年第2期214-220,共7页
Chinese Journal of Sensors and Actuators
基金
国家自然科学基金项目(51577191)。
关键词
磁信标
有限元分析
磁场性能
优化设计
magnetic beacon
finite element analysis
magnetic field performance
optimization design