期刊文献+

认知无线网络中频谱预测技术研究进展 被引量:2

Research Progress of Spectrum Prediction Techniques in Cognitive Radio Networks
下载PDF
导出
摘要 随着无线网络业务的迅猛增长,稀缺的无线频谱资源成为制约无线通信技术发展的瓶颈。认知无线电技术通过对授权频谱进行二次利用的方法为缓解频谱资源匮乏与日益增长的无线业务需求之间的矛盾提供了一种十分有效的技术解决方案。频谱预测技术作为认知无线电的关键技术之一,其在降低系统能量消耗,提高系统灵敏度,降低频谱冲突及提高系统容量等方面发挥重要作用。为此,对认知无线网络中频谱预测技术的研究现状及最新进展进行较为全面和深入的研究,从频谱感知,频谱决策,频谱迁移及频谱共享等4个方面对频谱预测技术及其在认知无线网络中的应用进行了分析,并指出频谱预测技术未来的发展趋势及存在的挑战。 With the rapid growth of wireless network services,the scarce wireless spectrum resources have become a bottleneck restricting the development of wireless communication technologies?Cognitive Radio(CR)technology provides a very effective technical solution to alleviate the contradiction between spectrum resource scarcity and the growing demand for wireless services through the secondary utilization of licensed spectrum.As one of the key technologies of CR,spectrum prediction technique plays an important role in reducing system energy consumption,improving system sensitivity,reducing spectrum conflicts and increasing system capacity.Therefore,an in-depth and comprehensive study on the research status and the latest progress of spectrum prediction techniques in cognitive radio networks(CRNs)were conducted.The spectrum prediction technique and its application in CRNs were analyzed from the perspectives of spectrum sensing?spectrum decision,spectrum mobility and spectrum sharing?The future development trend and challenges of spectrum prediction technique were pointed out in the end of the paper.
作者 罗欢 曹开田 钱平 邓菲 LUO Huan;CAO Kaitian;QIAN Ping;DENG Fei(School of Electrical and Electronic Engineering,Shanghai Institute of Technology,Shanghai 201418,China)
出处 《应用技术学报》 2020年第1期71-78,共8页 Journal of Technology
基金 国家自然科学基金(61703279) 上海市自然科学基金(19ZR1455200) 上海应用技术大学中青年科技人才发展基金(ZQ2018-24) 上海应用技术大学引进人才基金项目(YJ2018-11)资助。
关键词 认知无线电 频谱感知 频谱决策 频谱迁移 频谱共享 cognitive radio spectrum sensing spectrum decision spectrum mobility spectrum sharing
  • 相关文献

参考文献1

二级参考文献11

  • 1Akyildiz I F, Lee Won-Yeol, and Vuran M C, et al.. Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey [J]. Computer Networks, 2006, 50(13): 2127-2159.
  • 2Zeng Yong-hong, Koh Choo Leng, and Liang Ying-chang. Maximum eigenvalue detection theory and application [C]. IEEE International Conference on Communications, Beijing, May 19-23, 2008: 4160-4164.
  • 3Unnikrishnan J and Veeravalli V V. Cooperative sensing for primary detection in cognitive radio [J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(1): 18-27.
  • 4Zhang Wei, Mallik R K, and Ben Letaief K. Cooperative spectrum sensing optimization in cognitive radio networks [J] IEEE International Conference on Communications, Beijing, May 19-23, 2008: 3411-3415.
  • 5Ma Jun, Zhao Guo-dong, and Li Ye. Soft combination and detection for cooperative spectrum sensing in cognitive radio networks [J]. IEEE Transactions on Wireless Communications, 2008, 7(11): 4502-4507.
  • 6Tulino A M and Verdu S. Random Matrix Theory and Wireless Communications [M]. Hanover, USA: Now Publisher Inc., 2004: 3-73.
  • 7Johnstone I M. On the distribution of the largest eigenvalue in principle components analysis [J]. The Annals of statistics, 2001, 29(2): 295-327.
  • 8Johansson K. Shape fluctuations and random matrices [J]. Communications in Mathematical Physics, 2000, 209(2): 437-476.
  • 9Tracy C A and Widom H. On orthogonal and symplectic matrix ensembles [J]. Communications in Mathematical Physics, 1996, 177(3): 727-754.
  • 10Baik J, Arous G B, and Peche S. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices [J]. The Annals of Probability, 2005, 33(5): 1643-1697.

共引文献16

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部