摘要
根据车站的人流密度数据,利用ARIMA模型进行了预测,将非平稳的时间序列进行差分,得到平稳化的时间序列,通过Durbin-Watson检验测试数据的稳定性并观察ARIMA模型的残差平均值和方差以及连续残差的自相关性。通过将数据按照比例分为训练集和数据集来对模型进行评估,得到模型的评估得分。为了进一步提高车站人流密度的预测精度,建立基于k-means聚类的ARIMA组合预测模型,通过k-means聚类算法将问题一中得到的主要影响因素的数据集进行聚类,观察每一类数据的组内特点,对每一类数据重新利用ARIMA模型进行预测,然后计算出组合模型的评估得分。
出处
《数字通信世界》
2020年第3期26-28,共3页
Digital Communication World