期刊文献+

基于ARIMA时序算法的车站人流密度预测模型 被引量:1

下载PDF
导出
摘要 根据车站的人流密度数据,利用ARIMA模型进行了预测,将非平稳的时间序列进行差分,得到平稳化的时间序列,通过Durbin-Watson检验测试数据的稳定性并观察ARIMA模型的残差平均值和方差以及连续残差的自相关性。通过将数据按照比例分为训练集和数据集来对模型进行评估,得到模型的评估得分。为了进一步提高车站人流密度的预测精度,建立基于k-means聚类的ARIMA组合预测模型,通过k-means聚类算法将问题一中得到的主要影响因素的数据集进行聚类,观察每一类数据的组内特点,对每一类数据重新利用ARIMA模型进行预测,然后计算出组合模型的评估得分。
机构地区 山东科技大学
出处 《数字通信世界》 2020年第3期26-28,共3页 Digital Communication World
  • 相关文献

参考文献1

二级参考文献3

共引文献1

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部