期刊文献+

自激气动力有理函数系数的直接识别算法 被引量:1

Direct Identification of Coefficients of Rational Function Approximation for Self-Excited Aerodynamic Forces
下载PDF
导出
摘要 有理函数系数识别是基于气动力有理函数逼近的桥梁颤振计算的前提条件.有理函数滞后项的数量对其系数的识别结果影响较大,现有方法中一般仅考虑单滞后项的有理函数系数识别,易造成气动力描述上的失真,进而导致桥梁颤振计算结果不准确.基于正弦信号的自激气动力在时域上与有理函数对等的原则,采用最小二乘拟合方法,提出了一种可计入多个滞后项的有理函数系数的直接识别算法.以薄平板模型为对象,利用强迫振动风洞试验获得了自激气动力,采用该算法直接识别了计入不同滞后项的有理函数系数,并分析了滞后项数量对气动力重构精度影响以及对颤振临界风速计算精度的影响.通过自由振动颤振试验获得了实际的颤振风速,进而与采用识别出的有理函数计算的颤振风速进行对比,结果表明:颤振临界风速的试验值与计算值吻合较好,从而验证了本文所提识别算法的准确性;与现有的有理函数系数识别方法相比,本文提出的识别方法兼顾了效率和精度,可广泛用于实际桥梁断面自激气动力有理函数系数的识别中. The identification of coefficients of a rational function is the precondition for flutter analysis of longspan bridges based on rational function approximation. The number of lag terms of rational functions has a large influence on the identification accuracy. The coefficient identification of rational function approximation in existing methods are generally based on one lag term, which easily causes distortion problems in both aerodynamic description and coefficients and thus further affects the accuracy of flutter predictions. This paper proposes a direct identification algorithm of rational function coefficients by considering multiple lag terms,according to the principle that the self-excited aerodynamic force of sinusoidal signals is equal to the rational function in time domain and using the least square fitting method.. Then, the forced vibration test of a thin flat plate with harmonic vibration is carried out to characterize the self-excited forces, and the proposed algorithm is used to identify the coefficients of the rational function with different number of lag terms. Influences of the number of lag terms on the accuracy of self-excited aerodynamic force reconstruction and critical flutter wind speed calculation are analyzed. The accuracy of the algorithm is validated by comparing the critical wind speeds obtained from free vibration wind tunnel tests with those from flutter analysis using the identified coefficients.Results show that the calculated values of critical flutter wind speeds are in good agreement with the tested values, which verifies the effectiveness and accuracy of the proposed algorithm. Compared with the existing identification methods of rational function coefficients, the proposed identification method takes both efficiency and accuracy into account, and can be widely used in coefficient identification of rational function approximation for self-excited forces of bridge girders.
作者 伍波 王骑 廖海黎 李郁林 WU Bo;WANG Qi;LIAO Haili;LI Yulin(School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China;Key Laboratory for Wind Engineering of Sichuan Province,Southwest Jiaotong University,Chengdu 610031,China)
出处 《西南交通大学学报》 EI CSCD 北大核心 2020年第2期247-255,共9页 Journal of Southwest Jiaotong University
基金 国家自然科学基金(51678508,51378442,51308478) 国家自然科学基金高铁联合基金(U1434205)。
关键词 自激气动力 有理函数 识别算法 滞后项 风洞试验 self-excited forces rational function identification algorithm lag term wind tunnel test
  • 相关文献

参考文献5

二级参考文献74

  • 1张宏杰,朱乐东.附加风攻角对1400m斜拉桥颤振分析结果的影响[J].振动与冲击,2013,32(17):95-99. 被引量:7
  • 2钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报,1994,34(2):131-136. 被引量:509
  • 3Li Q c, Lin Y K. New stochastic theory for bridge stability in turbulent flow: Ⅱ[ J ]. Journal of Engineering Mechanics, 1995, 121 ( 1 ) : 102-116.
  • 4Scanlan R H. Motion-related body force functions in two- dimensional low-speed flow [ J ]. Journal of Fluids and Structures, 2000, 14( 1 ) :49-63.
  • 5Chowdhury A, Sarkar P. Experimental identification of rational function coefficients for time-domain flutter analysis [ J ]. Engineering Structures, 2005, 27 ( 9 ) : 1349-1364.
  • 6Caracoglia L, Jones N P. A methodology for the experimental extraction of indicial functions for streamlined and bluff deck sections [ J ]. Journal of Wind Engineering and Industrial Aerod~mmics, 2003,91:609-636.
  • 7Scanlan R H, Tomko J J. Airfoil and bridge deck flutter derivatives [ J ]. Journal of the Engineering Mechanics Division, ASCE, 1971 , 97 ( 6 ) : 1717-1737.
  • 8Sears W R. Some aspects of non-stationary airfoil theory and its practical application [ J ]. Journal of Aeronautical Science, 1941, 8(3): 104-108.
  • 9Theodorsen T. General theory of aerodynamic instability and the mechanism of flutter[ R]. USA: National Advisory Committee for Aeronautics, 1935.
  • 10Jones R T. The unsteady lift on a wing of finite aspect ratio [ R ]. USA : National Advisory Committee for Aeronautics, 1940.

共引文献39

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部