期刊文献+

Dynamical response of a neuron–astrocyte coupling system under electromagnetic induction and external stimulation

Dynamical response of a neuron–astrocyte coupling system under electromagnetic induction and external stimulation
下载PDF
导出
摘要 Previous studies have observed that electromagnetic induction can seriously affect the electrophysiological activity of the nervous system. Considering the role of astrocytes in regulating neural firing, we studied a simple neuron–astrocyte coupled system under electromagnetic induction in response to different types of external stimulation. Both the duration and intensity of the external stimulus can induce different modes of electrical activity in this system, and thus the neuronal firing patterns can be subtly controlled. When the external stimulation ceases, the neuron will continue to fire for a long time and then reset to its resting state. In this study, "delay" is defined as the delayed time from the firing state to the resting state, and it is highly sensitive to changes in the duration or intensity of the external stimulus. Meanwhile, the self-similarity embodied in the aforementioned sensitivity can be quantified by fractal dimension. Moreover, a hysteresis loop of calcium activity in the astrocyte is observed in the specific interval of the external stimulus when the stimulus duration is extended to infinity, since astrocytic calcium or neuron electrical activity in the resting state or during periodic oscillation depends on the initial state. Finally, the regulating effect of electromagnetic induction in this system is considered. It is clarified that the occurrence of "delay" depends purely on the existence of electromagnetic induction. This model can reveal the dynamic characteristics of the neuron–astrocyte coupling system with magnetic induction under external stimulation. These results can provide some insights into the effects of electromagnetic induction and stimulation on neuronal activity. Previous studies have observed that electromagnetic induction can seriously affect the electrophysiological activity of the nervous system. Considering the role of astrocytes in regulating neural firing, we studied a simple neuron–astrocyte coupled system under electromagnetic induction in response to different types of external stimulation. Both the duration and intensity of the external stimulus can induce different modes of electrical activity in this system, and thus the neuronal firing patterns can be subtly controlled. When the external stimulation ceases, the neuron will continue to fire for a long time and then reset to its resting state. In this study, "delay" is defined as the delayed time from the firing state to the resting state, and it is highly sensitive to changes in the duration or intensity of the external stimulus. Meanwhile, the self-similarity embodied in the aforementioned sensitivity can be quantified by fractal dimension. Moreover, a hysteresis loop of calcium activity in the astrocyte is observed in the specific interval of the external stimulus when the stimulus duration is extended to infinity, since astrocytic calcium or neuron electrical activity in the resting state or during periodic oscillation depends on the initial state. Finally, the regulating effect of electromagnetic induction in this system is considered. It is clarified that the occurrence of "delay" depends purely on the existence of electromagnetic induction. This model can reveal the dynamic characteristics of the neuron–astrocyte coupling system with magnetic induction under external stimulation. These results can provide some insights into the effects of electromagnetic induction and stimulation on neuronal activity.
作者 Zhi-Xuan Yuan Pei-Hua Feng Meng-Meng Du Ying Wu 袁治轩;冯沛华;独盟盟;吴莹(State Key Laboratory for Strength and Vibration of Mechanical Structures,Shaanxi Engineering Laboratory for Vibration Control of Aerospace Structures,School of Aerospace Engineering,Xi’an Jiaotong University,Xi’an 710049,China)
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第3期126-136,共11页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant No.11772242) China Postdoctoral Science Foundation(Grant No.2018M631140)。
关键词 delay FRACTAL BISTABILITY electromagnetic INDUCTION delay fractal bistability electromagnetic induction
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部