期刊文献+

基于模糊神经网络PID控制的智能充电方法研究 被引量:6

Research on intelligent charging method based on fuzzy neural network PID control
下载PDF
导出
摘要 铅酸蓄电池充电过程具有多变量、非线性、时变性、滞后性的特点,现有充电技术的不足,严重影响了充电效率和电池寿命。提出了一种基于模糊RBF神经网络PID控制的间歇正负脉冲的充电控制策略。利用具有较强逻辑推理能力的模糊PID与RBF神经网络相结合,实现充电参数的动态调整和充电电流的在线控制。通过实验和仿真测试结果表明,本充电控制方法有效缩短了充电时间,充电电流曲线能更好地逼近马斯充电曲线,达到了提高充电效率和延长蓄电池使用寿命的目的。 The lead acid battery charging process has the characteristics of multi-variable,nonlinear and time varying.The lack of existing charging technology has seriously affected the charging efficiency and battery life.Aiming at this problem,a charging method based on fuzzy RBF neural network PID control with intermittent positive and negative pulse is proposed.The fuzzy PID with strong logical reasoning ability is combined with the RBF neural network to realize dynamic adjustment of parameters and online control of charging current.The experimental and simulation test results show that the charging control method effectively shortens the charging time,and the charging current curve can better approach the MAS charging curve.The purpose of improving charging efficiency and extending battery life is achieved.
作者 朱望纯 孙启林 ZHU Wang-chun;SUN Qi-lin(Schoo of Elecronic Engineering and Aumamin Cuiilin Universityof Electronic Technology,Guilin Guangxi 541004,China;Guangxi Key Laboratory of Automatic Detecting Technology and Instruments,Guilin Guangxi 540004,China)
出处 《电源技术》 CAS 北大核心 2020年第3期414-417,共4页 Chinese Journal of Power Sources
基金 广西自动检测技术与仪器重点实验室主任基金项目(YQ16111) 桂林电子科技大学研究生教育创新计划资助项目(2019YCXS096)。
关键词 智能充电 RBF神经网络 模糊PID 间歇正负脉冲 铅酸蓄电池 intelligent charging RBF neural network fuzzy PID intermittent positive and negative pulses lead acid battery
  • 相关文献

参考文献7

二级参考文献46

共引文献66

同被引文献75

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部