期刊文献+

自适应属性选择的实体对齐方法 被引量:6

Entity alignment method based on adaptive attribute selection
原文传递
导出
摘要 现有实体对齐方法普遍存在传统方法依赖外部信息和人工构建特征,而基于表示学习的方法忽略了知识图谱中的结构信息的问题。针对上述问题,提出自适应属性选择的实体对齐方法,融合实体的语义和结构信息训练基于两个图谱联合表示学习的实体对齐模型。提出使用基于自适应属性选择的属性强约束模型,根据数据集特征自动生成最优属性类型和权重约束,提升实体对齐效果。两个实际数据集上的试验表明,该方法与传统表示学习方法相比准确率最高提升了约11%。 Most existing entity alignment methods typically relied on external information and required expensive manual feature construction to complete alignment.Knowledge graph-based methods used only semantic information and failed to use structural information.Therefore,this paper proposed a new entity alignment method based on adaptive attribute selection,training an entity alignment model based on the joint embedding of the two knowledge graphs,which combined the semantic and structural information.Also,this paper proposed the use of strong attribute constraint based on adaptive attribute selection,which could adaptively generate the most effective attribute category and weight,to improve the performance of entity alignment.Experiments on two realistic datasets showed that,compared with traditional methods,the precision of the proposed method was improved by 11%.
作者 苏佳林 王元卓 靳小龙 程学旗 SU Jialin;WANG Yuanzhuo;JIN Xiaolong;CHENG Xueqi(CAS Key Lab of Network Data Science and Technology,Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100080.China;School of Computer and Control Engineering,University of Chinese Academy of Sciences,Beijing 101408,China)
出处 《山东大学学报(工学版)》 CAS CSCD 北大核心 2020年第1期14-20,共7页 Journal of Shandong University(Engineering Science)
基金 国家重点研发计划项目课题(2016YFB1000902) 国家自然科学基金资助项目(61572469,61772501,61572473,91646120)。
关键词 知识图谱 实体对齐 自适应属性选择 联合表示学习 属性强约束 knowledge graph entity alignment adaptive attribute selection joint embedding strong attribute constraint
  • 相关文献

参考文献1

共引文献13

同被引文献137

引证文献6

二级引证文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部