摘要
随着公众环保意识的增强,废水达标排放成为工业生产中至关重要的一步。传统的污水出水水质预测模型是基于静态数据模型,这样不仅忽略了过程变量中的动态有效信息,还影响了模型预测的精度,降低了模型的泛化能力。在考虑了过程变量的时变与动态特性的基础上,将时间差分方法嵌入到典型相关分析模型中,分析了时间差分阶数变化对模型预测精度的影响。与传统的典型相关分析建模方法相比,基于时间差分的典型相关分析模型对出水化学需氧量的预测均方根误差由1.5028下降至0.5645,相关系数由0.4227提高到0.8470;对于出水总氮,其均方根误差由2.3440下降到1.1926,相关系数由0.4059提高到0.7936。模型的预测精度与泛化能力均得到提高。
With the improvement of public awareness of environmental protection,the discharge of industrial wastewater became a crucial issue in industrial production.The typical water quality models were based on static models which ignored the dynamic information in process variables,resulting in the reduction in the accuracy of model prediction and the generalization ability of the models.Considering the time-varying and dynamic characteristics of process variables,a time difference model embedded into canonical correlation analysis was proposed in this paper.The effect of the order of the time difference model on the prediction accuracy was also analyzed.Compared with the traditional canonical correlation analysis,the root mean square error values of effluent chemical oxygen demand and effluent total nitrogen were reduced from 1.5028 to 0.5645 and from 2.3440 to 1.1926,respectively.The correlation coefficient values were increased from 0.4227 to 0.8470 and from 0.4059 to 0.7936,respectively.The results indicated that the prediction accuracy and generalization ability of the model were both improved.
作者
刘鸿斌
宋留
LIU Hongbin;SONG Liu(Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,Nanjing Forestry University,Nanjing 210037,Jiangsu,China;State Key Laboratory of Pulp and Paper Enginccnng,South China University of Icchnology,Guangzhou 510640,Guangdong,China)
出处
《山东大学学报(工学版)》
CAS
CSCD
北大核心
2020年第1期101-108,共8页
Journal of Shandong University(Engineering Science)
基金
制浆造纸工程国家重点实验室开放基金资助项目(201813)
南京林业大学高层次人才科研启动基金(GXL029)。
关键词
废水处理过程
动态过程
时间差分
典型相关分析
软测量
wastewater treatment processes
dynamic processes
time difference
canonical correlation analysis
soft sensor