摘要
Vortex-induced vibration is likely to occur when subjected to wind loads because of low horizontal stiffness,resulting in internal force and large lateral amplitude.Long-term wind-induced vibration can not only affect the normal service and durability performance of chemical towers,but also seriously endanger the safety of towers in service periods,and cause property losses.In this study,a passive control method for suppressing wind-induced vibration of chemical towers is proposed.The flow around the flow field is guided by a pre-set air-blowing channel,thus destroying the unsteady vortex shedding in the wake region of the flow field and achieving the purpose of flow control.Two accelerometers are used to measure the vibration signal of the chemical tower model with and without the perforated pipe.The control effects of the spacing and the installation position of the perforated pipe are then studied.Experimental results show that the passive perforated pipe control method can effectively reduce the vibration amplitude of the chemical tower under wind loads,and decrease the potential wind-induced vibration.
化工塔结构水平方向刚度较小,受风荷载作用时,易产生涡激振动现象,进而产生较大横向振幅和内力。长期风致振动会影响化工塔的正常使用和耐久性能,严重危害其服役期内的安全。本文提出利用套环抑制化工塔风致振动的被动控制方法,预设吹气通道来引导绕流场的流动,从而破坏绕流场尾迹区的非定常旋涡脱落,达到流动控制的目的。本文通过加速度传感器测量化工塔模型在安装套环前后的加速度信号,再利用编程软件将其转换为位移信号数据,研究分别改变沿塔身套环布置的间距以及套环布置的位置的控制效果。试验结果表明,被动吸气套环控制方法能有效减小化工塔在风荷载下的振动幅度,从而能减小潜在风致振动。
基金
This work was supported by the National Natural Science Foundation of China(Nos.51578188,51722805,51378153 and 51808173)
the Fundamental Research Funds for Central Universities(HIT.BRETIII.201512,HIT.BRETIV.201803 and HIT.NSRIF.201862).