期刊文献+

基于深度学习的社交媒体情感信息抽取及其在灾情分析中的应用研究 被引量:15

Extracting Sentiment Information from Social Media Based on Deep Learning and the Research on Disaster Reduction
下载PDF
导出
摘要 社交媒体具有强实效性、广传播性和低成本等优点,在减灾救援中发挥了重要作用,但较少有人抽取其中隐含的公众细粒度情感信息进行灾情分析。该文基于深度学习算法抽取社交媒体中蕴含的细粒度情感信息,同时结合社交媒体中包含的时空信息构建涉灾地理信息数据,在此基础上利用GIS空间分析方法研究灾害进展特征,分析结果可为减灾救援提供有效的信息参考,并以2017年8月8日九寨沟地震事件为案例,验证了该方法在减灾中的应用效果。 Social media has played an important role in disaster reduction in recent years due to its strong real-time,wide dissemination and low cost.Based on its rich content and spatio-temporal information,many scholars have carried out a lot of researches in disaster reduction.But few people extract the fine-grained public sentiment information contained in it for disaster analysis.So,in this paper,we proposed a method of extracting fine-grained metaphorical sentiment information contained in social media based on deep learning model.At the same time,we constructed disaster-related geographic information data by combining spatio-temporal features contained in social media.Based on this,the GIS spatial analysis methods were used to study the characteristics of disaster progress,and the analysis results can provide effective information for disaster reduction and rescue.This paper took the Jiuzhaigou earthquake on August 8,2017 as an example to verify the efficiency of the method in disaster reduction.
作者 杨腾飞 解吉波 闫东川 李国庆 YANG Teng-fei;XIE Ji-bo;YAN Dong-chuan;LI Guo-qing(Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094;Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100094;University of Chinese Academy of Sciences,Beijing 100094,China)
出处 《地理与地理信息科学》 CSCD 北大核心 2020年第2期62-68,F0002,共8页 Geography and Geo-Information Science
基金 国家重点研发计划项目(2016YFE0122600) 中国科学院战略性先导A类专项“地球大数据科学工程”(XDA19020201)。
关键词 深度学习 社交媒体 公众情感 减灾 deep learning social media public sentiment disaster reduction
  • 相关文献

参考文献9

二级参考文献102

共引文献252

同被引文献230

引证文献15

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部