期刊文献+

改进的BP神经网络对飞机换热器结垢厚度预测 被引量:1

Prediction of Fouling Thickness of Aircraft Heat Exchanger by Modified BP Neural Network
下载PDF
导出
摘要 为了节约飞机维修成本,准确预测换热器结垢厚度,通过利用改进的BP神经网络预测模型,利用25组数据,建立了换热器结垢厚度与四个因素(环境温度、空调系统进口压力、初级换热器出口温度、次级换热器出口温度)之间的网络预测模型。模型包括4个输入神经元,9个隐含层神经元和1个输出层神经元。训练结果表明,改进之后的BP神经网络模型不仅克服了原始BP神经网络收敛速度慢,稳定性差的特点,还可以以较高的精度预测换热器的结垢厚度。 In order to save the cost of aircraft maintenance,by using the modified BP neural network prediction model and using 25 sets of data,the network prediction model between the scaling thickness of heat exchanger and four factors(ambient temperature,inlet pressure of air conditioning system,outlet temperature of primary heat ex-changer and outlet temperature of secondary heat exchanger)was established.The model consists of 4 input neurons,9 hidden layer neurons and one output layer neuron.The training results show that the modified BP neural network model can not only overcome the characteristics of slow convergence rate and poor stability of the original BP neural network,but also predict the scaling thickness of the heat exchanger with high accuracy.
作者 杜林颖 于鸿彬 侯立国 汪天京 DU Lin-ying;YU Hong-bin;HOU Li-guo;WANG Tian-jing(School of Mechanical Engineering,Tianjin Polytechnic University,Tianjin 300387,China;Beijing Aircraft Maintenance and Engineering Corporation,Beijing 100621,China)
出处 《计算机仿真》 北大核心 2020年第1期27-30,共4页 Computer Simulation
基金 民航重大专项,项目编号(MHRD20140110) 国家重点研发计划(2016YFB1102003)。
关键词 飞机热交换器 结垢厚度 预测 Aircraft Heat exchanger Fouling thickness Prediction
  • 相关文献

参考文献6

二级参考文献22

  • 1钱剑峰,吴学慧,孙德兴,吴荣华.管壳式污水换热器结垢厚度对流动换热的影响[J].流体机械,2007,35(1):74-78. 被引量:17
  • 2刘广建.适航与维修[M].北京:适航与维修杂志社,2002..
  • 3波音培训中心.Boeing737 Airframe Maintenance Training Manual[Z].北京:波音培训中心客户部,1995..
  • 4东航昆明飞机维修基地.737飞机故障记录[Z].昆明:东航昆明维修基地,2003..
  • 5Pitts, W. McCulloch, How We Know Universals [J].Bulletin of Mathematical Biophysics, Vol. 9, 1947.
  • 6D. Rumelhart, J. McCelland, Parallel Dis-tributed Processing [M]. MIT Press, 1986.
  • 7J. Moody, C. Darken, Fast Learning in Networks of Locally-tuned processing Units [J]. Neural Computation, 1989, 1 (2).
  • 8shi, shangming, Xu lida, Liu bao, Improving the accuracy of nonlinear combined forecasting using neural networks [J]. Expert Systems.
  • 9Jiawei Han, Micheline Kamber , Data Mining Concepts and Techniques [M]. China Machine Press, 2001.11.
  • 10Miche Y, Sorjamaa A, Bas P, et al. OP-ELM : optimally pruned extreme learning machine [ J ]. Neural Networks, IEEE Transactions on,2010, 21(1) :158-162.

共引文献89

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部