期刊文献+

深度强化学习的图像特征高效分类方法仿真 被引量:1

Simulation of Image Feature Efficient Classification Method for Deep Reinforcement Learning
下载PDF
导出
摘要 针对现有的图像特征分类方法收敛性差,分类无法满足日益增加的网络需求的现状,本文提出了一种基于深度强化学习的图像特征分类方法。通过对目标图像特征区域进行复域Contourlet分解,过滤处理分解结果,从而可以将目标图像子带系数矩阵提取出来,求取系数矩阵的相关特征。采取深度学习网络,使所选图像的特征向量直接经过已训练的层状网络深度模型,完成图像特征分类。实验结果表明,所提方法的误识率比现有方法明显降低,收敛速度明显提升。改进方法比传统方法更具优势,能够满足图像特征分类智能化处理的需要。 In this article,an efficient classification method of image feature based on deep reinforcement learning was put forward.The complex domain Contourlet transform method was used to perform complex domain Contourlet decomposition on the feature region of target image,and the decomposition result was input into the filter bank.Through the filtering processing,the subband coefficient matrix of target image was extracted to find relevant features of coefficient matrix.Meanwhile,these fusion results were taken as feature vectors of target image.Finally,the deep learning network was adopted,so that the feature vector of selected image could directly pass through the trained lay-ered network depth model.Thus,the image feature classification was completed.Simulation results show that,com-pared with the existing method,the false recognition rate of proposed method is reduced obviously.The convergence speed is significantly improved.The improved method is more advantageous than the traditional method,which can meet the intelligent classification of image feature.
作者 李睿 章宇辉 LI Rui;ZHANG Yu-hui(School of Computer and Communication,Lanzhou University of Technology,Lanzhou gansu 730000,China)
出处 《计算机仿真》 北大核心 2020年第1期377-380,共4页 Computer Simulation
关键词 深度强化学习 图像特征 特征分类 层状网络深度模型 Deep reinforcement learning Image feature Feature classification Layered network depth model
  • 相关文献

参考文献12

二级参考文献193

  • 1刘刚,张洪刚,郭军.不同训练样本对识别系统的影响[J].计算机学报,2005,28(11):1923-1928. 被引量:15
  • 2丁守宏.基于分形分析的纹理特征提取[D].大连:大连理工大学,2011.
  • 3Guo ZH,Zhang L,Zhang D,et al.Rotation invariant texture classification using adaptive LBP with directional statistical features[C]//17th IEEE International Conference on Image Processing,2010:285-288.
  • 4数据堂(北京)科技股份有限公司.Texture Database[EB/OL].[2011-08-18].http://www.datatang.com/data/6718/.
  • 5Rousselet G A, Thorpe S J, Fabre-Thorpe M. How paral- lel is visual processing in the ventral pathway. Trends in Cognitive Sciences, 2004, 8 (8) : 363-370.
  • 6Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. Neural Networks, IEEE Transactions on, 1999, 10(3) : 626-634.
  • 7Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nature Neuroscience, 1999, 2 (11) : 1019-1025.
  • 8Connor C E, Brincat S L, Pasupathy A. Transformation of shape information in the ventral pathway. Current Opinion in Neurobiology, 2007, 17(2) : 140-147.
  • 9Kavukcuoglu K, Ranzato M A, Fergus R, et al. Learning invariant features through topographic filter maps. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), Miami, Ameri- ca, 2009. 1605-1612.
  • 10Yang J, Yu K, Huang T. Supervised translation-invariant sparse coding. In: Proceedings of the International Con- ference on Computer Vision and Pattern Recognition (CVPR), San Francisco, America, 2010. 3517-3524.

共引文献377

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部