期刊文献+

基于直接扰动法的keff敏感性及不确定度分析 被引量:1

Sensitivity and Uncertainty Analyses of keff Based on Direct Perturbation Method
下载PDF
导出
摘要 本文在连续能量反应堆蒙特卡罗程序RMC中采用直接扰动法开发了敏感性分析功能,并使用该方法和一阶微扰理论方法,计算了Godiva临界基准题中keff对不同反应截面的敏感性系数,两种方法的计算结果基本吻合,证明了本文在RMC中开发的基于直接扰动法的敏感性分析功能的正确性。同时,本文还基于微扰理论方法和随机抽样方法,利用SCALE6.2程序包中的56群和252群协方差数据,计算了Godiva临界基准题中不同反应截面下keff的不确定度。结果表明,协方差数据的能群结构划分对keff的不确定度无显著影响。 In this paper,the direct perturbation method is used to develop the sensitivity analysis capability in the continuous-energy reactor Monte Carlo(RMC)codes.The sensitivity coefficients of keff in the Godiva critical benchmark problem to different reaction cross sections are calculated by using this method and the first-order perturbation theory method,respectively.The results calculated by the two methods agree well,which prove the correctness of the sensitivity analysis capability based on the direct perturbation method developed in RMC.At the same time,based on the perturbation theory and random sampling method,the uncertainty of keff induced by different cross sections of the Godiva critical benchmark is calculated by using 56 groups and 252 groups covariance data in SCALE6.2 package.The results show that the energy group structure of covariance data has no significant effect on the uncertainty of keff.
作者 施冠麟 贾从龙 程泉 王侃 SHI Guan-lin;JIA Cong-long;CHENG Quan;WANG Kan(Department of Engineering Physics,Tsinghua University,Beijing 100084,China)
出处 《现代应用物理》 2020年第1期67-70,共4页 Modern Applied Physics
基金 国家自然科学基金资助项目(11475098)。
关键词 蒙特卡罗程序RMC 敏感性分析 直接扰动 reactor Monte Carlo code sensitivity analysis direct perturbation
  • 相关文献

参考文献1

二级参考文献16

  • 1ZWERMANN W, GALLNER L, KLEIN M, et al. XSUSA solution for the PWR Pincell burnup benchmark[C]// Proceedings of the 6th Workshop on OECD Benchmark for Uncertainty Analysis in Best-Estimate Modeling for Design, Operation and Safety Analysis of LWRs (UAM-6). Karlsruhe, Germany:[so n.J, 2012.
  • 2SCALE: A comprehensive modeling and simulation suite for nuclear safety analysis and design, Version 6. 1, ORNL/TM-2005/39[R]. USA: Oak Ridge National Laboratory, 2011.
  • 3KIEDROWSKI B C, BROWN F B. Comparison of the Monte Carlo adjoint-weighted and differential operator perturbation methods[RJ. USA: Los Alamos National Laboratory, 2010.
  • 4NAUCHI v, KAMEYAMA T. Development of calculation technique for iterated fission probability and reactor kinetic parameters using continuous-energy Monte Carlo method[J].J Nucl Sci Technol , 2010, 47(11): 977-990.
  • 5REARDEN B T, PERFETTI C M, WILLIAMS M L, et al. SCALE sensitivity calculations using contributon theory[C]// Proceedings ofJoint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA+MC2010). Tokyo,Japan:[so n.J, 2010.
  • 6PERFETTI C M, REARDEN B T. Development of a SCALE tool for continuous-energy eigenvalue sensitivity coefficient calculations[C]//Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013). Paris, France:[so n.J, 2013.
  • 7PERFETTI C M. Advanced Monte Carlo methods for continuous-energy eigenvalue sensitivity coefficient calculation[D]. USA: University of Michigan, 2012.
  • 8KIEDROWSKI B C, BROWN F B, WILSON P P H. Adjoint-weighted tallies for k-eigenvalue calculations with continuous-energy Monte Carlo[J]. Nuclear Science and Engineering, 2011, 168 (3): 226-24l.
  • 9KIEDROWSKI B C, BROWN F B. Adjointbased k-eigenvalue sensitivity coefficients to nuclear data using continuous-energy Monte Carlo[J]. Nuclear Science and Engineering, 2012, 174: 227-244.
  • 10SHIM HJ, KIM C H. Adjoint sensitivity and uncertainty analyses in Monte Carlo forward calculations[J].Journal of Nuclear Science and Technology, zcn , 5: 1453-146l.

共引文献2

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部