期刊文献+

基于RetinaNet模型的鸟巢智能检测 被引量:2

Intelligent detection of bird’s nest based on RetinaNet model
下载PDF
导出
摘要 为解决架空输电线路运行过程中因设备及杆塔上鸟巢对输电线路造成的不良影响,本文通过对比分析一阶目标检测模型和二阶目标检测模型的优劣,选取以分类损失函数为核心、特征金字塔网络为骨干网络的RetinaNet模型用于鸟巢目标的自动检测。解决了经典的一阶目标检测模型和二阶目标检测模型对鸟巢的检测效率或准确率比较低的问题。本文实验首先通过数据集选取及数据集预处理,并经过模型训练逐步优化调整网络结构和参数,建立了适合鸟巢检测的RetinaNet模型,实现对鸟巢的快速准确检测。实验结果表明,RetinaNet模型对输电线路的鸟巢的的平均准确率为94.1%,每张图片的识别速度为68ms,通过与Faster R-CNN、YOLO及SSD方法进行比较,验证了RetinaNet模型对输电线路设备及杆塔上鸟巢检测的有效性和可靠性。 In order to solve the adverse effect of the bird’s nest on the transmission line caused by the equipment and tower during the operation of the overhead transmission line,this paper compares and analyzes the advantages and disadvantages of the first-order target detection model and the second-order target detection model,and selects theRetinaNet model with the classification loss function as the core and the characteristic pyramid network as the backbone network for the automatic detection of the bird’ s nest target.It solves the problem that the classical first-order target detection model and the second-order target detection model have low detection efficiency or accuracy.In this experiment,firstly,through data set selection and data set preprocessing,and through model training,the network structure and parameters are optimized and adjusted step by step,and a RetinaNet model suitable for nest detection is established to achieve rapid and accurate nest detection.The experimental results show that the average accuracy of RetinaNet model to the bird’s nest of transmission line is 94.1%,and the recognition speed of each picture is 68 ms.By comparing with Faster R-CNN,YOl O and SSD methods,the validity and reliability of RetinaNet model to the bird’s nest detection on transmission line equipment and tower are verified.
作者 时磊 杨恒 周振峰 杨刘贵 张辉 杜浩 SHI Lei;YANG Heng;ZHOU Zhenfeng;YANG Liugui;ZHANG Hui;DU Hao(Transmission Operation and Maintenance Branch,Guizhou Power Grid Co.,Ltd.,Guiyang 550002 Guizhou,China;Guizhou Electric Power Design&Research Institute,Co.,Ltd.,Power Construction Corporation of China,Guiyang 550002,Guizliou,China)
出处 《电力大数据》 2020年第2期53-58,共6页 Power Systems and Big Data
关键词 特征提取网络 分类损失函数 深度学习 鸟巢检测 有效性 feature extraction network classification loss function deep learning bird’s nest detection validity
  • 相关文献

参考文献13

二级参考文献105

  • 1郭伟跃.美国输电线路和变电站电气设备防鸟害措施[J].中国电力,2006,39(8):82-84. 被引量:54
  • 2SUN Yan-jing ZHANG Shen MIAO Chang-xin LI Jing-meng.Improved BP Neural Network for Transformer Fault Diagnosis[J].Journal of China University of Mining and Technology,2007,17(1):138-142. 被引量:42
  • 3DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [ C l// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washing- ton, DC: IEEE Computer Society, 2005, 1:886-893.
  • 4FENSZWALB P F, GIRSHICK R B, MCALLETER D, et al. Ob- ject detection with discriminatively trained part-based models [ J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2010, 32(9) : 1627 - 1645.
  • 5LOVE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2) : 91 - 110.
  • 6PANDEY M, LAZEBNIK S. Scene cognition and weakly super- vised object localization with deformable part-based models [ C]// Proceedings of the 2011 International Conference on Computer Vi- sion. Washington, DC: IEEE Computer Society, 2011: 1307 - 1314.
  • 7AZIZPOUR H, LAPTEV I. Object detection using strongly-super- vised deformable part models [ C]// ECCV 2012: Proceedings of the 12th European Conference on Computer Vision, LNCS 7572. Berlin: Springer, 2012:836-849.
  • 8MALISIEWICZ T, GUPTA A, EFROS A A. Ensemble of exem- plar-SVMs for object detection and beyond [ C]// Proceedings of the 2011 International Conference on Computer Vision. Washing- ton, DC: IEEE Computer Society, 2011:89-96.
  • 9PARK D, RAMANAN D, FOWLKES C. Multiresolution models for object detection [ C]// ECCV 2010: Proceedings of the 1 lth European Conference on Computer Vision, LNCS 6314. Berlin: Springer, 2010:241-254.
  • 10LU S X, WANG Z. A comparison among four SVM classification methods: LSVM, NLSVM, SSVM and NSVM [ C]// Proceedings of the 2004 International Conference on Machine Learning and Cy- beroetics. Piscataway, NJ: IEEE, 2004, 7:4277-4282.

共引文献316

同被引文献8

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部