摘要
坐卧式康复外骨骼机器人可以帮助下肢功能障碍患者进行康复训练,为实现康复训练的位置控制目标,通过深入分析人机耦合关系,建立包括穿戴者、外骨骼在内的耦合运动学/动力学模型,提出了基于人机混合系统动力学模型的带前馈补偿项的PD控制算法,然而为了实现良好的运动轨迹跟踪性能,必须在位置控制算法中加入对不确定项的补偿,因此提出一种基于BP神经网络补偿的位置控制算法并通过仿真验证算法的高效性。
Sitting/lying rehabilitation exoskeleton robot enable patients with lower limb dysfunction to take rehabilitation training,in order to achieve the position control goal of rehabilitation training,a coupled kinematics/kinetics model including wearer and exoskeleton was established by deeply analyzing the human-machine coupling relationship in the paper.A PD control algorithm with feedforward compensation term was proposed based on the dynamic model of human-machine hybrid system.However,in order to achieve good trajectory tracking performance,it is necessary to add uncertainty to the position control algorithm.The paper proposeD a position control algorithm based on BP neural network compensation whose validity can be verified by simulation.
作者
陈靓
黄玉平
郑继贵
陶云飞
CHEN Jing;HUANG Yu-ping;ZHENG Ji-gui;TAO Yun-fei(Beijing Institute of Precise Mechatronics and Controls,Beijing 100076,China)
出处
《计算机仿真》
北大核心
2020年第2期349-354,共6页
Computer Simulation
关键词
下肢康复机器人
耦合系统建模
带前馈的比例微分控制
神经网络补偿
Lower limb rehabilitation robot
Coupled system modeling
PD control with feedforward
Neural Network compensation