期刊文献+

基于BP神经网络补偿的下肢外骨骼位置控制 被引量:2

Position Control Based on BP Neural Network Compensation for Lower Limb Exoskeleton Rehabilitation
下载PDF
导出
摘要 坐卧式康复外骨骼机器人可以帮助下肢功能障碍患者进行康复训练,为实现康复训练的位置控制目标,通过深入分析人机耦合关系,建立包括穿戴者、外骨骼在内的耦合运动学/动力学模型,提出了基于人机混合系统动力学模型的带前馈补偿项的PD控制算法,然而为了实现良好的运动轨迹跟踪性能,必须在位置控制算法中加入对不确定项的补偿,因此提出一种基于BP神经网络补偿的位置控制算法并通过仿真验证算法的高效性。 Sitting/lying rehabilitation exoskeleton robot enable patients with lower limb dysfunction to take rehabilitation training,in order to achieve the position control goal of rehabilitation training,a coupled kinematics/kinetics model including wearer and exoskeleton was established by deeply analyzing the human-machine coupling relationship in the paper.A PD control algorithm with feedforward compensation term was proposed based on the dynamic model of human-machine hybrid system.However,in order to achieve good trajectory tracking performance,it is necessary to add uncertainty to the position control algorithm.The paper proposeD a position control algorithm based on BP neural network compensation whose validity can be verified by simulation.
作者 陈靓 黄玉平 郑继贵 陶云飞 CHEN Jing;HUANG Yu-ping;ZHENG Ji-gui;TAO Yun-fei(Beijing Institute of Precise Mechatronics and Controls,Beijing 100076,China)
出处 《计算机仿真》 北大核心 2020年第2期349-354,共6页 Computer Simulation
关键词 下肢康复机器人 耦合系统建模 带前馈的比例微分控制 神经网络补偿 Lower limb rehabilitation robot Coupled system modeling PD control with feedforward Neural Network compensation
  • 相关文献

参考文献3

二级参考文献45

  • 1刘军凯,孙宁,黄美发.下肢康复训练机器人步态运动机构设计[J].机械设计与研究,2006,22(5):59-61. 被引量:3
  • 2Sterr A, Freivoghl S. Motor-improvement following intensive training in low-functioning chronic hemiparesis [J]. Neurology, 2003, 61(6): 842-844.
  • 3Liepert J, Bauder H, Wolfgang HR, et al. Treatment-induced cortical reorganization after stroke in humans [J]. Stroke, 2000, 31(6): 1210-1216.
  • 4Hu XL, Tong KY, Song R, et al. A comparison between electro- myography-driven robot and passive motion device on wrist re- habilitation for chronic stroke [J]. Neurorehabil Neural Repair, 2009, 23(8): 837-846.
  • 5Hocoma. Lokomat-Enhanced Functional Locomotion Therapy with Augmented Performance Feedback [OL]. [2015- 05- 05]. http://www.hocoma.corn/en/products/lokomat.
  • 6Schack A, Labmyare R, Vallery H, et al. Feasibility and effects of patient-cooperative robot-aided gait training applied in a 4-week pilot trial [J]. J Neuroeng Rehabil, 2012, 9: 31.
  • 7Mirbagheri MM, Niu X, Kindig M, et al. The effects of locomo- tor training with a robotic-gait orthosis (Lokomat) on neuro- muscular properties in persons with chronic SCI [J]. Conf Proc IEEE Eng Med Biol Soc, 2012, 2012: 3854-3857.
  • 8Krewer C, RieB K, Bergmann J, et al. Immediate effectiveness of single-session therapeutic interventions in pusher behav- iour [J]. Gait Posture, 2013, 37(2): 246-250.
  • 9Westlake KP, Patten C. Pilot study of Lokomat versus manu- al- assisted treadmill training for locomotor recovery post-stroke [J]. J Neuroeng Rehabil, 2009, 6(1): 1-11.
  • 10Hocoma.Lokomat全自动机器人步态评估训练系统[EB/OL]. [2015- 05- 15]. http://www.soreha.net/Product/content/id/ 58.html.

共引文献30

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部