期刊文献+

基于整体变分的红外和可见光图像融合 被引量:3

Infrared and Visible Images Fusion Based on Total Variation
下载PDF
导出
摘要 针对红外与可见光的融合图像存在对比度低、场景细节信息不清晰的问题,提出基于整体变分的红外和可见光图像融合方法。该方法将每次迭代后的融合图像分别与可见光和红外图像进行差分运算,作为整体变分模型的正则项和保真项。同时,引入关于红外图像的非增扩散函数来引导扩散,抑制红外图像边缘信息的平滑,从而把图像融合问题转化为图像去噪问题,最终转化为一个泛函求极值问题。实验结果从视觉质量及客观评价上验证了该方法的有效性。 Aiming at the problems of low contrast and unclear scene details in infrared and visible image fusion,an infrared and visible image fusion method based on total variation is proposed.In this method,the difference between the fusion image after each iteration and the visible and infrared images is used as the regular and fidelity terms of the total variational model.At the same time,a non-incremental diffusion function about infrared images is introduced to guide the diffusion and suppress the smoothness of the edge information of the infrared images,so that the image fusion problem can be transformed into an image denoising problem,and finally it is transformed into a functional problem of finding extreme values.The experimental results verify the effectiveness of the method from visual quality and objective evaluation.
作者 倪钏 阮秀凯 周志立 崔桂华 NI Chuan;RUAN Xiu-kai;ZHOU Zhi-li;CUI Gui-hua(National-Local Joint Engineering Laboratory for Digitalized Electrical Design Technology,Wenzhou University,Wenzhou 325035,China)
出处 《红外》 CAS 2019年第11期42-48,共7页 Infrared
基金 国家自然科学基金面上项目(61671329,61775170) 浙江省基础公益研究计划项目(GG19F010026) 浙江省教育厅一般项目(Y201635569) 温州市科技计划项目(2018N0042)。
关键词 红外图像 可见光图像 图像融合 整体变分 去噪 infrared image visible light image image fusion total variation denoise
  • 相关文献

参考文献2

二级参考文献17

  • 1邓磊,陈云浩,李京.一种基于小波变换的可调节遥感影像融合方法[J].红外与毫米波学报,2005,24(1):34-38. 被引量:31
  • 2张天序,赵广州,王飞,朱光喜.一种快速递归红外舰船图像分割新算法[J].红外与毫米波学报,2006,25(4):295-300. 被引量:18
  • 3Pajares G, de la Cruz J M. A wavelet-based image fusion tutorial [ J ]. Pattern Recognition, 2004, 37 ( 9 ) : 1855-- 1872.
  • 4Zhou Wang, Bovika A C. A universal image quality index [ J]. IEEE Signal Processing Letters,2002,9(3 ) :81--84.
  • 5Toet A, Ijspeert J K, Waxman A M, et al. Fusion of visible and thermal imagery improves situational awareness [ J]. Displays,1997,18(2) :85--95.
  • 6Otazu X, Gonzalez-Audicana M, Fors O, et al. Introduction of sensor spectral response into image fusion methods. Apphcation to wavelet-based methods [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2005,43 ( 10 ) : 2376-- 2385.
  • 7Candes E, Demanet L, Donoho D, et al. Fast discrete curvelet transforms [ J ] Multiscale Modeling & Simulation, 2006,5 ( 3 ) :861--899.
  • 8Burt P J, Kolczynski R J. Enhanced image capture through fusion[ C ]. Prceedings of 4th International Conference on Computer Vision. Berlin : Germany, 1993 : 173--182.
  • 9Candes E J, Demanet L, Donoho D L, et al. Fast dis-crete curvelettransforms [R]. Applied and Computa-tional Mathematics,California Intitule of Technology.2005:1-43.
  • 10Candes E J, Donoho D L. New tight frames of curveletsand optimal representation of objects with piecewise*singularities [J]. Commun on Pure and Appl Math,2004,57(2):219-266.

共引文献23

同被引文献244

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部