期刊文献+

星用C频段50W固态功率放大器设计 被引量:17

Design on C-band 50W Solid State PowerAmplifier for Satellite Application
下载PDF
导出
摘要 为了满足通信卫星对于固态功率放大器高功率、高效率、高集成的要求,文章提出了一种星用C频段固态功率放大器的设计方法。首先通过采用半导体单片集成电路芯片,对射频电路进行创新性设计,将电调衰减、数字增益控制、功率放大等功能集成在一个模块中,实现功率放大器的高集成;其次,通过整机热设计,并结合红外热像仪测试,优化高功率氮化镓器件的散热途径,在实现整机大功率输出的同时,保证整机的高可靠应用;最后,对电源电路进行优化设计,使得固放电源具备高效率、高稳定的特点,为射频电路提供稳定的供电。温度循环、热真空等试验结果表明,所研制的C频段50W固放性能稳定、可靠性高,满足星载应用要求。 To meet the high power,high efficiency,high integration requirements of communications satellite on solid state power amplifier,a design approach on C-band solid state power amplifier for satellite application was proposed.Firstly,the functions of electrically controlled attenuation,digital gain control and power amplifier are integrated in a single module,by using monolithic microwave integrated circuit(MMIC)chips and researching the microwave circuits deeply,to achieve the high integration of power amplifier.Secondly,heat dissipation simulation and thermal infrared imager measurements were performed,to ensure the reliability of the high power module.Lastly,the design of DC power circuits were optimized,to achieve the high efficiency,high stability characteristics,and to ensure the reliable power supply to the radio circuits.Thermal cycling and thermal vacuum measurements indicate that the produced C-band 50W solid state power amplifier has sufficient reliability and satisfies the requirement of satellite application.
作者 陈伟伟 王程 杨章 罗聃 刘家玮 杨飞 汪蕾 CHEN Weiwei;WANG Cheng;YANG Zhang;LUO Dan;LIU Jiawei;YANG Fei;WANG Lei(China Academy of Space Technology(Xi'an),Xi'an 710000,China)
出处 《空间电子技术》 2020年第1期18-22,共5页 Space Electronic Technology
基金 国家科技重大专项资助(编号:2017ZX01001101-018)。
关键词 C频段 固态功率放大器(SSPA) 高功率 热设计 C-band Solid state power amplifier(SSPA) High power Thermal design
  • 相关文献

参考文献6

二级参考文献32

  • 1Joh J and del Alamo J A 2006 IEEE IEDM Tech. Digest December 11-13, 2006, San Francisco, USA p. 415.
  • 2Meneghesso G, Verzellesi G, Danesin F, Rampazzo F, Zanon F, Tazzoli A, Meneghini M and Zanoni E 2008 IEEE Trans. Device and Material Reliability 8 332.
  • 3Ma X H, Pan C Y, Yang L Y, Yu H Y, Yang L, Quan S, Wang H, Zhang J C and Hao Y 2011 Chin. Phys. B 20 027304.
  • 4Ma X H, Ma J G, Yang L Y, He Q, Jiao Y, Ma P and Hao Y 2011 Chin. Phys. B 20 067304.
  • 5Rongming C, Likun S, Fichtenbaum N, Brown D, Zhen C, Keller S, DenBaars S P and Mishra U K 2008 IEEE Electron. Dev. Left. 29 974.
  • 6Sozza A, Dua C, Morvan E, Delage S, Rampazzo F, Tazzoli A, Danesin F, Meneghesso G, Zanoni E, Gurutchet A, Malbert N, Labat N, Grimbert B and de Jaeger J C 2005 IEEE IEDM Tech. Digest December 5-7, 2005, San Francisco, USA p. 590.
  • 7Kim H, Thompson R M, Tilak V, Prunty T R, Shealy J R and Eastman L F 2003 Electron. Dev. Lett. 24 421.
  • 8Kunii T, Totsuka M, Kamo Y, Yamamoto Y, Takeuchi H, Shimada Y, Shiga T, Minami H, Kitano T, Miyakuni S, Nakatsuka S, Inoue A, Oku T, Nanjo T, Oishi T, Ishikawa T and Matsuda Y 2004 IEEE CSIC Digest December 13- 15, 2004 San Francisco, USA p. 197.
  • 9Joh J, Xia L and del Alamo J A 2007 IEEE IEDM Tech. Digest December 10-12, 2007, Washington DC- USA p. 385.
  • 10Joh J and del Alamo J A 2008 IEEE Electron. Dev. Lett. 29 287.

共引文献14

同被引文献92

引证文献17

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部