期刊文献+

马尔科夫随机场MRF线性可变权重图像分割方法 被引量:2

Markov Random FieldLiner Variable Weight Image Segmentation Method
下载PDF
导出
摘要 在对图像进行分割时,传统MRF模型没有考虑到像素间的相互关系,这样会使得分割不够准确。为此,本文提出了一种MRF线性可变权重图像分割方法。它在标记场和特征场中加入了邻域像素间的强度信息,从而可以有效运用图像空间信息。然后将指数型可变权重参数改为线性可变权重参数,来连接标记场和特征场,加快了分割结果更新速度,增大了势函数的选择范围。实验显示,当用改进算法分割不同类型的图像时,本文提出的算法在分割结果的准确性和区域一致性上,更具有效性和鲁棒性。不管是在分割速度上还是图像处理效率上,都有了很大的提升。 The traditional MRF model does not account for the interconnection between the pixels,which makes it less accurate in image segmentation. A MRF linear variable weight image segmentation method is proposed. First,it adds the intensity information among the neighboring pixels in the marked field and the characteristic field,so that the image spatial information can be effectively used. Then,the exponential variable weight parameter will be changed to the linear variable weight parameter to connect the marker field and the characteristic field,which can accelerate the update speed of the segmentation results and increase the selection range of the potential function.The experiment results show that the algorithm is more effective and robust in the accuracy and regional consistency of the segmentation results when segmenting different types of images. To sum up,there has been a great improvement both in the segmentation speed and image processing efficiency.
作者 李慧 张荣国 胡静 刘小君 LI Hui;ZHANG Rong-guo;HU Jing;LIU Xiao-jun(TaiyuanUniversity of Science and Technology,School of Computer Science and Technology,Taiyuan 030024,China;Hefei University of Technology,School of Mechanical Engineering,Hefei 230009,China)
出处 《太原科技大学学报》 2020年第2期111-117,共7页 Journal of Taiyuan University of Science and Technology
基金 国家自然科学基金(51375132) 山西省自然科学基金(201801D121134) 晋城市科技局资助项目(201501004-5)。
关键词 图像分割 MRF 权重参数 线性可变权重 image segmentation MRF weighting parameter liner variable weight
  • 相关文献

参考文献6

二级参考文献55

  • 1李旭超,朱善安.FGMM-MRF层次模型在图像分割中的应用[J].计算机辅助设计与图形学学报,2005,17(12):2659-2664. 被引量:8
  • 2颜刚,陈武凡.图像分类数的自适应估计准则与最优分割算法[J].南方医科大学学报,2006,26(7):959-962. 被引量:1
  • 3Menet S, Saint-Marc P, Medion G B. B-snake: Implementation and application to stereo[ C]//Proceedings of Image Understanding Workshop. Pittsburgh, Pennsylvania, USA, 1990:720-726.
  • 4Bao Paul, Zhang Lei. Noise reduction for magnetic resonance images via adaptive muhiscale products thresholding [ J]. IEEE Transactions on Medical Imaging, 2003,22 ( 9 ) : 1089-1099.
  • 5Kass M, Witkin A, Terzopouls D. Snake: Active contour models [ J ]. International Journal of Computer Vision, 1987,1 (4) : 321- 331.
  • 6Casselles V, Kimmel R, Sapiro G. Geodesic active contours[J]. International Journal of Computer Vision, 1997,22 (1) :61-79.
  • 7Paragios N, Mellina G O, Ramesh V. Gradient vector flow fast geometric active contours [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(3) : 402-407.
  • 8Cohen L D, Cohen 1. Finite-element methods for active contour models and balloons for 2D and 3 D images[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993,15 ( 11 ) : 1131-1147.
  • 9Xu C, Prince J L. Snake, shapes, and gradient vector flow[J]. IEEE Transactions on Image Processing, 1998,7 (1) :359-369.
  • 10Ning Ji-fang, Wu Cheng-ke, Liu Shi-gang, et al. NGVF: An improved external force field for active contour model[ J]. Pattern Recognition Letters, 2007,28( 1 ) :58-63.

共引文献166

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部