期刊文献+

基于sEMG和LSTM的下肢连续运动估计 被引量:11

Estimation of Lower Limb Continuous Movements Based on sEMG and LSTM
下载PDF
导出
摘要 针对下肢助力外骨骼的连续运动控制问题,提出了一种基于表面肌电信号(sEMG)与长短时记忆(LSTM)网络的连续运动估计方法.通过LSTM对肌电-运动的映射关系进行训练分析,基于奇异值分解特征值矩阵的误差算法获取主元分析(PCA)算法的主成分数量(降维维度),实现了对下肢三个关节在矢状面内的连续运动估计,且提高了连续运动估计的实时性.通过与传统网络支持向量机(SVM)、反向传播(BP)神经网络训练结果的对比分析,证明了LSTM网络在下肢连续运动预测中的优越性. A scheme of continuous motion estimation based on surface electromyography(sEMG)and long-short-term memory(LSTM)network is proposed for the control of lower limb assisted exoskeleton.The mapping relationship between EMG and motion is trained and analyzed by LSTM.The number of principal components(dimensionality reduction)for principal component analysis(PCA)algorithm are obtained based on the error algorithm of singular value decomposition eigenvalue matrix.The continuous motion estimation of three lower limb joints in sagittal plane is realized,and the real-time performance of the continuous motion estimation is improved.In comparison of the training results of LSTM network with those of traditional networks such as support vector machine(SVM)and back propagation(BP)neural network,the superiority of LSTM network in continuous motion prediction of lower limbs is proved.
作者 王斐 魏晓童 秦皞 WANG Fei;WEI Xiao-tong;QIN Hao(School of Robot Science&Engineering,Northeastern University,Shenyang 110169,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第3期305-310,342,共7页 Journal of Northeastern University(Natural Science)
基金 辽宁省自然科学基金资助项目(20180520007) 中央高校基本科研业务费专项资金资助项目(N172608005,N182612002).
关键词 表面肌电信号 长短时记忆网络 主元分析算法 连续运动估计 实时性 surface electromyography(sEMG) long-short-term memory(LSTM)network principal component analysis(PCA)algorithm continuous motion estimation real-time performance
  • 相关文献

参考文献4

二级参考文献93

  • 1Goodrich M A, Schultz A C. Human-robot interaction: a survey. Foundations and Trends in Human-Computer Inter- action, 2007, 1(3): 203-275.
  • 2Nam Y, Koo B, Cichocki A, Choi S. GOM-face: GKP, EOG, and EMG-based multimodal interface with application to humanoid robot control. IEEE Transactions on BiomedicM Engineering, 2014, 61(2): 453-462.
  • 3Artemiadis P. EMG-based robot control interfaces: past present and future. Advances in Robotics ~z Automation 2012, 1(2): 1-3.
  • 4Ngeo J G, Tamei T, Shibata T. Continuous and simul- taneous estimation of finger kinematics using inputs from an EMCl-to-muscle activation model. Journal of NeuroEngi- neering and Rehabilitation, 2014, 11:122.
  • 5Chowdhury R H, Reaz M B I, Ali M A B, Bakar A A A, Chellappan K, Chang T G. Surface electromyography sig- nal processing and classification techniques. Sensors, 2013, 13(9): 12431-12466.
  • 6Ahsan M R, Ibrahimy M I, Khalifa O O. EMG signal classifi- cation for human computer interaction: a review. European Journal of Scientific Research, 2009, 33(3): 480-501.
  • 7Ison M, Artemiadis P. Multi-directional impedance control with electromyography for compliant human-robot interac- tion. In: Proceedings of the 2015 International Conference on Rehabilitation Robotics (ICORR). Singapore: IEEE, 2015. 416-421.
  • 8Farina D, Merletti R, Enolau R M. The extraction of neural strategies from the surface EMG. Journal of Applied Phys- iology, 2004, 96(4): 1486-1495.
  • 9De Luca C J. Imaging the Behavior of Motor Units by De- composition of the EMG Signal, Boston, MA, USA: Delsys Inc.. 2008.
  • 10Chu J U, Moon I, Lee Y J, Kim S K, Mun M S. A supervised feature-projection-based real-time EMG pattern recognition for multifunction myoelectric hand control. IEEE/ASME Transactions on Mechatronics, 2007, 12(3): 282-290.

共引文献157

同被引文献86

引证文献11

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部