摘要
针对53式7.62 mm口径穿甲燃烧弹对圆筒型陶瓷-钛合金-芳纶三单元层复合靶板结构的侵彻过程,本文开展了抗弹性能数值模拟研究.模拟结果表明,弹体垂直入射将造成陶瓷块开裂破碎,最终撞击在钛合金单元层上形成凹坑,复合靶板穿深与试验所测结果吻合良好,相对误差仅为9.4%;陶瓷、钛合金、芳纶三个单元层消耗的能量所占百分比分别为83.77%,13.77%,2.46%.在此基础上,通过设置0°~70°系列不同初始时刻入射姿态角θ0,发现弹体侵彻过程中陶瓷单元层耗散的能量占复合靶板耗散总能的比值始终最大.进一步分析陶瓷单元层可知,随着θ0的增大,陶瓷单元层受力峰值总体呈减小的趋势.且入射姿态角不同,弹靶作用模式也存在差异.对陶瓷单元层进行耗能分析,可知其与质量损失变化大体一致.但初始时刻入射姿态角为30°时,由于弹靶作用过程以弹身接触靶板为主,靶板质量损伤大但能量获取相对较少.
Focusing on the process of the 53 type 7.62 mm armour-piercing projectile penetrating into the cylindrical ceramic/titanium/aramid three-layered composite targets,a study on ballistic performance numerical simulation was carried out.The simulation results show that the vertical incidence of projectile can cause cracks and fragmentations of ceramic layer,and eventually form pits on the titanium layer.The penetration depth of composite targets well agree with the experimental result,the relative error is only 9.4%.The percentages of energy dissipated by ceramic,titanium alloy and aramid layers are 83.77%,13.77%and 2.46%,respectively.On this basis,setting the initial incident attitude angleθ0 from 0°to 70°,it is found that the ratio of energy dissipated by ceramic layer to the total energy is the largest in the process of projectile penetrating into targets.Further analysis of the ceramic layer shows that with the increase of initial incident attitude angleθ0,the maximum force of ceramic layer decreases.Moreover,the action modes of projectile and target vary with the initial incident attitude angle.Energy analysis of ceramic layer shows that,the action mode is basically consistent with the mass loss.However,whenθ0 is 30°,the mass loss of ceramic layer is large,but the dissipated energy is relatively less.
作者
范群波
李鹏茹
周豫
刘昕
FAN Qun-bo;LI Peng-ru;ZHOU Yu;LIU Xin(School of Material Science and Technology,Beijing Institute of Technology,Beijing 100081,China)
出处
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2020年第2期219-226,共8页
Transactions of Beijing Institute of Technology
关键词
圆筒型复合靶板结构
陶瓷单元层
数值模拟
抗弹性能
内在机理
cylindrical composite targets
ceramic layer
numerical simulation
ballistic performance
underlying mechanism