期刊文献+

一种基于多层感知器的房颤心电图检测方法 被引量:7

Multilayer perceptron-based method for atrial fibrillation ECG detection
下载PDF
导出
摘要 目的:提出一种基于多层感知器(MLP)的新型房颤识别算法。方法:首先设计一种新型自适应的R波阈值检测算法,然后以R波位置和幅度为特征,MLP为分类器进行正常/房颤心电图识别。MLP的网络参数采用深层置信网络预训练算法进行初始化,最后用误差反向传播算法对MLP网络权重进行调整。结果:在单通道心电图数据集上对正常、房颤心电信号进行分类,本研究方法的灵敏度达96.00%,特异性为84.18%,平均识别率为90.09%。结论:这种基于MLP的心电识别算法准确率高、计算复杂度较低,可为房颤的智能诊断提供一种新方法。 Objective To propose an atrial fibrillation(AF)recognition method based on multilayer perceptron(MLP).Methods Firstly,a novel R-wave detection algorithm based on adaptive threshold was designed,and then with the location and amplitude of R-wave as features,MLP was used as classifier to recognize the normal/AF electrocardiogram(ECG).The network parameters of MLP were initialized by deep belief network pre-training algorithm.Finally,the weights of MLP network were tuned by error back-propagation(BP)algorithm.Results The sensitivity,specificity and average recognition rate of the proposed method for the classification of normal and AF ECG signals on a single-channel ECG database were96.00%,84.18%and 90.09%,respectively.Conclusion The proposed algorithm based on MLP which has high accuracy and lower computation complexity can be a new method for the intelligent diagnosis of AF.
作者 蔚文婧 王寻 张鹏远 颜永红 WEI Wenjing;WANG Xun;ZHANG Pengyuan;YAN Yonghong(Key Laboratory of Speech Acoustics and Content Understanding,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China;Xinjiang Laboratory of Minority Speech and Language Information Processing,Xinjiang Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Urumqi 830011,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《中国医学物理学杂志》 CSCD 2020年第3期332-336,共5页 Chinese Journal of Medical Physics
基金 国家自然科学基金(11590770-4,31600868,11774380)。
关键词 房颤 心电图 多层感知器 R波检测 深层置信网络 atrial fibrillation electrocardiogram multilayer perceptron R-wave detection deep belief network
  • 相关文献

参考文献3

二级参考文献26

  • 1余辉,张力新,吕扬生.基于小波变换的QRS波检测[J].生物医学工程与临床,2001,5(2):65-70. 被引量:10
  • 2[美]崔锦泰 程正兴译.小波分析导论[M].西安:西安交通大学出版社,1995..
  • 3程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,1997..
  • 4Szilagyi SM.Comparison of the Neural-network-based adaptive filtering and wavelet transform for R,T and P waves detection.Information Technology Applications in Biomed-icine,1997:73.
  • 5Burke M.J.Nasor,M.Wavelet analysis of the timing of individual components of the ECG signal.IEEE,2001;1037.
  • 6K.Mokrani,A.Allche Electrocardiogram characterization using wavelet analysis.IEEE,2002; 1367.
  • 7钟杭美.动态心电图预警心脏性猝死[J].临床心电学杂志,2007,16(5):352-355. 被引量:18
  • 8DONG S, XU F, LINGWOOD B, et al. R-wave detec-tion: A comparative analysis of four methods using new-born piglet ECG[ C]//IEEE. Information Sciences SignalProcessing and their Applications (ISSPA),2010 10thInternational Conference on. Kuala Lumpur : IEEE Press,2010: 320-323.
  • 9ZHONG Y,XU L,YAN L, et al. Adaptive R-wave de-tection method in dynamic ECG with heavy EMG artifact[C ] //IEEE. Information and Automation (ICIA), 2012International Conference on. Shenyang : IEEE Press,2012: 83-87.
  • 10MA Y, TIAN Y,MA Y,et al. A new real-time R-wavedetection algorithm based on integral projection function[C J//IEEE. Biomedical Engineering and Sciences(IECBES ),2012 IEEE EMBS Conference on.Langkawi:IEEE Press,2012: 837-842.

共引文献29

同被引文献62

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部