摘要
目的选择简便、可靠的统计预测模型,为传染病疫情预测工作提供参考。方法对常见统计预测模型的原理、拟合优度检验与模型筛选进行介绍,并以厦门市结核病疫情为例开展模型应用。结果模型与数据拟合结果显示,11种模型均有统计学意义(P<0.05)。其中R 2最大为Cubic模型,其次为Quadratic模型和Logarithmic模型。Quadratic模型预测2019年7~12月厦门市报告发病数分别为191(95%CI:124-259)、192(95%CI:124-260)、193(95%CI:125-261)、194(95%CI:126-262)、195(95%CI:127-263)和196(95%CI:128-264)。结论常见统计模型可以用于厦门市结核病发病趋势预测,厦门市短期内报告病例数将略有上升趋势。
Objective To assess the predictive models commonly used in statistics,and determine the optimal model(s)for predicting the trend of tuberculosis.Methods Commonly used statistical predictive models were described concerning the principles,goodness of fit test and model selection,and applied to predicting the trend of tuberculosis in Xiamen city for choice of the best one(s)in following prevention and control of the epidemics.Results The fitting results into the model and data showed that 11 models had statistical significance(P<0.05).In the 11 models,the largest R 2 model was Cubic,followed by the Quadratic and Logarithmic.Quadratic model was used,and revealed 191(95%CI:124-259),192(95%CI:124-260),193(95%CI:125-261),194(95%CI:126-262)and 195(95%CI:127-263)and 196 cases of tuberculosis(95%CI:128-264),respectively,reported in Xiamen area from July to December of 2019.Conclusion The commonly used statistical model can be used to predict the incidence trend of tuberculosis in Xiamen area,and the number of reported cases in Xiamen tends to slightly increase in the short term.
作者
王明斋
李佳
芮佳
王瑶
杨蒙
王琦琦
陈田木
郑蓉蓉
WANG Ming-zhai;LI Jia;RUI Jia;WANG Yao;YANG Meng;WANG Qi-qi;CHEN Tian-mu;ZHENG Rong-rong(Xiamen Center for Disease Control and Prevention,Xiamen 361021,China;State key Laboratory of Molecular Vaccinology and Molecular Diagnostics,School of Public Health,Xiamen University;Chinese Center for Disease Control and Prevention)
出处
《热带病与寄生虫学》
2020年第1期29-32,共4页
Journal of Tropical Diseases and Parasitology
基金
厦门市科技计划指导性项目(2010S0658)
厦门大学大学生创新创业训练计划项目(2019Y0805)。
关键词
数学模型
结核病
预测
Mathematical model
Tuberculosis
Prediction