期刊文献+

NASA C3X叶片前缘气膜冷却的数值模拟 被引量:2

Numerical Simulation of Film Cooling of on the Leading Edge NASA C3X Blade
下载PDF
导出
摘要 对NASA C3X叶片前缘部分建立了合理简化模型,在此基础上数值研究了流动参数和气膜孔斜角角度对前缘气膜绝热冷却效率的影响。结果表明:①在吹风比为0.5~2.5,不同吹风比下,以小吹风比的冷却效率较高,吹风比为0.75时效率最高;主流雷诺数为100000和200000时,大雷诺数比小雷诺数下的冷却效率高;主、射流温度比不同时,冷却效率随温度比增大而增大;主流湍流度对冷却效率影响较小。②取射流孔斜角分别为30°、45°和60°,随着射流角度增加冷却效率降低。 A reasonable simplification model was made for the leading-edge part of NASA C3X blade,and based on this model,the influence of flow parameters and the bevel angle of film hole on the adiabatic cooling efficiency was studied.The results showed that:①When the blowing ratio ranges from 0.5 to 2.5,the cooling efficiency of small blowing ratio is higher.When the blowing ratio is 0.75,the efficiency is the high-est;When the mainstream Reynolds number is 100000 and 200000,the large Reynolds number has higher cooling efficiency than the small Reynolds number.When the temperature ratios of the main and jet streams are different,the cooling efficiency increases with the increase of the temperature ratio;The mainstream turbulence has little effect on the cooling efficiency.②The bevel angles of the jet holes are 30°,45°and 60°,respectively,and the cooling efficiency decreases as the angle increases.
作者 梅翔 胡汉平 杨依蓓 张凯 MEI Xiang;HU Hanping;YANG Yibei;ZHANG Kai(Department of Thermal Science and Energy Engineering,University of Science and Technology of China,Hefei 230027,China)
出处 《工业加热》 CAS 2020年第2期36-40,共5页 Industrial Heating
基金 中国科学技术大学预研项目(YZ2091700021)。
关键词 前缘气膜冷却 吹风比 雷诺数 温度比 湍流度 斜角 leading edge film cooling blowing ratio Reynolds number temperature ratio turbulivity bevel angle
  • 相关文献

参考文献1

二级参考文献13

  • 1戴萍,林枫.涡轮叶片前缘气膜冷却数值模拟[J].航空动力学报,2009,24(3):519-525. 被引量:9
  • 2林智荣,袁新.平面叶栅气膜冷却流动的数值模拟[J].工程热物理学报,2006,27(4):580-582. 被引量:5
  • 3Garg V K, Gaugler R E. Effect of coolant temperature and mass flow on film cooling of turbine blades [J]. International Journal of Heat Mass Transfer, 1997, 40:435 -445.
  • 4Lakehal D, Theodiridis G S, Rodi W. Three-dimensional flow and heat transfer calculations film cooling at the leading edge of a symmetrical turbine blade model [J]. International Journal of Heat and Fluid Flow, 2001, 22: 113 -122.
  • 5York W D, Leylek J H. Leading-edge film cooling physics: Part I Adiabatic effectiveness [J]// ASME Paper, 2002, 2002-GT-30166.
  • 6Bohn D, Becker V, Kusterer K, et al. Three-dimensional flow analysis of turbine blade cascade with leading-edge ejection [J]. Journal of Propulsion and Power, 2000, 16(1) : 49 - 56.
  • 7Rozati A, Tafti D K. Large-eddy simulations of leading edge film cooling.. Analysis of flow structures, effectiveness, andheat transfer coefficient[J].International of Heat and Fluid Flow, 2008, 29: 1-17.
  • 8Coakley T J, Huang P G. Turbulence modeling for high speed flows [C]// AIAA 1992. 92 -0436.
  • 9Yuan X, Daiguji H. A specially combined lower-upper factored implicit scheme for three-dimensional compressible Navier-Stokes equations [J]. Computers & Fluids, 2001, 30(3) : 339 - 363.
  • 10Daiguji H, Yuan X, Yamamoto S. Stabilization of higher-order high resolution schemes for the compressible Navier-Stokes equations [J].Int J Numerical Methods for Heat & Fluid Flow, 1997, 7(2): 250-274.

共引文献6

同被引文献25

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部