期刊文献+

基于多源学习活动流的分析规则设计及其应用 被引量:1

Design and Application of Analysis Rules based on Multi-Source Learning Activity Stream
下载PDF
导出
摘要 多源学习活动流的提出,可有效反映学习者穿梭于不同学习生态空间的数字活动轨迹,而将这些数据汇聚在一起加以追溯和分析,可全面理解学习者整个学习生态的需求和问题,从而有效支持智慧教育下的精准教与学。在借鉴ADL xAPI的活动描述模型、CAM的分层结构和Paradata的多用户视角的基础上,多源学习活动流的描述模型以及汇聚层次被加以讨论,补充了在以往学习分析研究中少有考虑到的数据记录的多源性以及汇聚分析的层次问题。首先,六类数据要素(Actor、Action、Object、Tool、Session和Source)逐渐递增组合、22条"情境-应用-数据"数据分析规则被提出,并按照个体性情境、任务性情境、社会性情境、时空性情境和环境性情境加以归类,以指导多源学习活动流数据分析的具体应用。然后,借助由Slack(一款App聚合协作学习平台)和Trello(一款学习项目管理平台)所搭建的多源学习环境,将提出的数据分析规则应用于实践:实验对象35名大二学生被分成10组,所收集的6179条学习活动行为数据使用Actor{1,n}-Action{1,n}/Tool{1,n}-Source等规则,从小组和个人的不同层次,解读学习者的行为模式偏好和学习状态变化,初步验证了所提分析规则的可用性。最终得到的研究成果指向解决今后必然越发复杂的数字学习生态中的学习分析问题,以期为其他研究者和教育一线工作者,提供一定的分析思路引导和框架指南。 The multi-source learning activity stream can effectively reflect the digital activity trajectory of the learner in different learning spaces. The data of multi-source learning activity stream can be collected,traced and analyzed to fully understand learners’ needs and problems from the perspective of the entire learning ecology,so as to support precision teaching and learning under smart education. Based on the activity behavior description model of ADL xAPI,the hierarchical structure of CAM and the multiuser perspective of Paradata,the description model and the convergence level of multi-source learning activity stream was discussed.Six types of data elements(including actor,action,object,tool,session and source) were gradually combined. From individual context,task context,social context,spatiotemporal context and environmental context,22 "context-application-data" data analysis rules were proposed. These rules establish the mapping relationship between data and context,and can be used to guide the specific applications. Then,with the multi-source learning environment built with Slack and Trello,the application practice of the data analysis rules was carried out to reveal learners’ behavior preferences and learning state changes. 35 sophomores were divided into 10 groups and the records of their learning activities were 6179. The data was analyzed using the proposed analysis rules,such as Actor {1,n}-Action{1,n}/Tool{1,n}-Source,from the levels of groups and individuals,and the results preliminarily verified the usability of the proposed analysis rules. The research points to solving the problem of learning analysis in the digital learning ecology that is bound to become more complicated in the future,and hopes to provide certain idea and guidance.
作者 郁晓华 肖敏 Yu Xiaohua;Xiao Min(Department of Education Information Technology,East China Normal University,Shanghai 200062)
出处 《远程教育杂志》 CSSCI 北大核心 2020年第2期89-98,共10页 Journal of Distance Education
基金 2019年度教育部人文社会科学研究规划基金项目“5-15岁儿童计算思维测评框架及方法研究”(项目号:19YJA880079)的研究成果。
关键词 学习活动流 多源 学习分析 学习情境 智慧教育 xAPI 分析规则 Learning Activity Stream Multi-Source Learning Analytics Learning Context Smart Education xAPI Analysis Rules
  • 相关文献

参考文献5

二级参考文献70

  • 1顾小清,王炜.支持教师专业发展的课堂分析技术新探索[J].中国电化教育,2004(7):18-21. 被引量:342
  • 2彭文辉,杨宗凯,黄克斌.网络学习行为分析及其模型研究[J].中国电化教育,2006(10):31-35. 被引量:145
  • 3Almeda, M. V. , Scupelli, P. , Baker, R. S. , Weber, M. , & Fisher, A. .(2014), Clustering of design decisions in classroom visual displays[A]. In Proceedings of the Fourth International Conference on Learning Analytics And Knowledge[ C]. 44-45. ACM.
  • 4Aguiar, E., Chawla, N. V., Brockman, J., Ambrose, G. A., & Goodrich, V. .(2014), Engagement vs performance: Using elec- tronic portfolios to predict first semester engineering student retention [ A]. In Proceedings of the Fourth International Conference on Learning Analytics And Knowledge[ C]. 103-112. ACM.
  • 5Aguilar, S. , Lonn, S. , & Teasley, S. D. .(2014), Percep- tions and use of an early warning system during a higher education transi- tion program [ A ]. In Proceedings of the Fourth International Conference on Learning Analytics And Knowledge[ C]. 113-117. ACM.
  • 6Arnold, K. E., Lynch, G., Huston, D., Wong, L., Jorn, L. , & Olsen, C. W. .(2014), Building institutional capacities and com- petencies for systemic learning analytics initiatives [ A ]. In Proceedings of the Fourth International Conference on Learning Analytics And Knowledge [ C]. 257-260. ACM.
  • 7Bngartn, A., Romero, C., Cerezo, R., & S6nchez- Santilltn, M. .(2014), Clustering for improving educational process min- ing[ A]. In Proceedings of the Fourth International Conference on Learn- ing Analytics And Knowledge[ C ]. 11-15. ACM.
  • 8Brooks, C., & Greer, J. .(2014), Explaining predictive mod- els to learning specialists using personas [ A ]. In Proceedings of the Fourth International Conference on Learning Analytics And Knowledge [C]. 26-30. ACM.
  • 9Chert, B., & Resendes ,M .(2014), Uncovering what matters : An- alyzing sequential relations among contribution types in knowledge-building discourse [ A ]. In Proceedings of the Fourth International Conference on ltming Analytics And Knowledge[ C ]. 226-230. ACM.
  • 10Chiu, M. M., & Fujita, N. .(2014), Statistical discourse analysis of online discussions : Informal cognition, social metacognition and knowledge creation[ A ]. In Proceedings of the Fourth International Conference onLearning Analytics And Knowledge[C]. 217-225. ACM.

共引文献192

同被引文献34

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部