期刊文献+

基于E2LSH的轨迹KNN查询算法

E2LSH-Based Algorithm for Trajectory KNN Query
下载PDF
导出
摘要 目前海量时空轨迹数据近邻查询算法中存在计算时间复杂度较高的问题,因此提出了一种结合领域POI数据和E2LSH算法的轨迹KNN查询算法。首先利用GeoHash技术对地理空间进行编码,然后结合POI数据实现向量空间的初步降维,进而根据停留时间构建每条轨迹的向量,采用局部敏感哈希函数运算结果建立轨迹索引,最后对查询返回的相似轨迹集合分别进行距离计算,经过排序得到距离最近的K个查询结果。对于增量的轨迹数据,利用E2LSH算法计算哈希值,直接添加轨迹索引,从而避免了复杂的计算过程以及对现有轨迹索引的影响。基于合成数据及真实数据集的实验结果表明,该方法在海量时空轨迹数据的近邻查询中,虽然牺牲了一定的准确率,但有效提升了算法效率,并能够高效简便地处理增量的时空轨迹数据。 At present,there is a problem of high computational time complexity in the nearest neighbor query algorithm of massive spatio-temporal trajectory data,so a trajectory KNN query algorithm combining domain POI data and E2LSH algorithm is proposed.Firstly,GeoHash technology is used to encode the geographic space,and then the initial dimensionality reduction of the vector space is realized by combining POI data,and then the vector of each trajectory is constructed according to the residence time.The locality sensitive hashing function is used to establish the track index.Finally,distance is calculated for the similar track set returned by the query,and the nearest K query results are obtained by sorting.For incremental trajectory data,the hash value is calculated by E2LSH algorithm,and the trajectory index is added directly,thus avoiding the complicated calculation process and the impact on the existing trajectory index.The experiment on synthetic data and real dataset shows that the proposed method can effectively improve the algorithm efficiency and process the incremental spatiotemporal trajectory data efficiently and easily,although some accuracy is sacrificed in the neighbor query of massive spatiotemporal trajectory data.
作者 邱磊 吴志兵 QIU Lei;WU Zhi-bing(Jiangnan Institute of Computing Technology,Wuxi 214083,China)
出处 《计算机技术与发展》 2020年第3期13-18,共6页 Computer Technology and Development
基金 核高基项目基金(2015zx01040)。
关键词 海量轨迹大数据 近邻查询 地理空间编码 局部敏感哈希 轨迹索引 massive trajectory data KNN-query geospatial space encode locality sensitive hashing trajectory indexing
  • 相关文献

参考文献6

二级参考文献87

  • 1刘云峰 ,齐欢 ,HU Xiang'en ,CAI Zhiqiang ,代建民 .基于潜在语义空间维度特性的多层文档聚类[J].清华大学学报(自然科学版),2005(S1):1783-1786. 被引量:11
  • 2邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 3胡蓉.多输出支持向量回归及其在股指预测中的应用[J].计算机技术与发展,2007,17(10):226-229. 被引量:11
  • 4Lee J G, Han J, Whang K Y. Trajectory clustering: A partition and group framework [C] //Proc of the 2007 ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2007: 593-604.
  • 5Li Q, Zheng Y, Xie X, et al. Mining user similarity based on location history [C] //Proc of the 16th ACM SIGSPATIAL Int Conf on Advances in Geographic Information Systems. New York: ACM, 2008, 229-237.
  • 6Lu E. Mining cluster-based mobile sequential patterns in location-based service environments [C] //Proc of IEEE Int Conf on Mobile Data Management (MDM). Piscataway, NJ: IEEE, 2009:273-278.
  • 7Zheng Y, Zhang L, Ma Z, et al. Recommending friends and locations based on individual location history [C] //Proc of the 16th SIGSPATIAL Conf on Advances in Geographical Information Systems. New York: ACM, 2008: 353-361.
  • 8Bogorny V, Camargo S, Engel P M. Mining frequent geographic patterns with knowledge constraints [C]//Proc of the 14th Annual ACM Int Symp on Advances in Geographic Information Systems. New York: ACM, 2006:139-146.
  • 9Ester M, Kriegel H, Sander J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C] //Proc of KDD'96. New York: ACM, 1996: 226-231.
  • 10Ying J, Lee W C. Mining user similarity from semantic trajectories [C] //Proc of ACM LBSN'10. New York: ACM, 2010: 19-26.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部