期刊文献+

基于PSO-BPNN的充填体围岩界面抗剪强度预测 被引量:5

Prediction on the Interface Shear Strength of Backfill and Surrounding Rock Based on PSO-BPNN Algorithm
原文传递
导出
摘要 在地下采场胶结充填体强度设计过程中,充填体围岩界面峰值抗剪强度是充填体安全系数计算的一个重要参数。为给出一定充填体侧压力下,充填体围岩界面峰值抗剪强度预估方法,使用非线性拟合能力强大的神经网络进行预估。基于试验所得考虑胶结剂含量、养护温度、养护时间和剪切面法向压力的试验数据,对胶结充填体围岩界面峰值抗剪强度进行预计。使用粒子群优化算法初始化反向传播神经网络权值和偏置参数,训练后的神经网络可以有效地对给定法向压力下胶结充填体围岩界面的峰值抗剪强度进行预估,预估结果可作为胶结充填体强度设计时的参考。 During the strength design of cemented backfill,the peak interface shear strength of backfill and surrounding rock is a key parameter for estimating the safety factor of backfill.In order to obtain the prediction method of the peak interface shear strength of backfill and surrounding rock under a certain side pressure of the backfill,the neural network with strong nonlinear fitting ability was used to predict.Taking the cement content,curing temperature,curing time and normal pressure of shear plane as test data,the peak interface shear strength of backfill and surrounding rock was predicted.The weights and bias parameters of back propagation neural network were initialized by particle swarm optimization algorithm.The trained neural network can effectively predict the peak shear strength of cemented backfill under a given normal pressure.The predicted results can be used as a reference for the strength design of cemented backfill.
作者 王志会 吴爱祥 王洪江 WANG Zhihui;WU Aixiang;WANG Hongjiang(Key Laboratory of the Ministry of Education of China for High-efficient Mining and Safety of Metal Mines,University of Science and Technology Beijing,Beijing 100083,China;Civil and Resource Engineering School,University of Science and Technology Beijing,Beijing 100083,China)
出处 《矿业研究与开发》 CAS 北大核心 2020年第3期130-134,共5页 Mining Research and Development
基金 国家重点研发计划项目(2017YFC0602903) 国家自然科学基金重点项目(51834001).
关键词 神经网络 粒子群优化 强度设计 胶结充填体 抗剪强度 Neural network Particle swarm optimization Strength design Cemented backfill Shear strength
  • 相关文献

参考文献3

二级参考文献16

共引文献31

同被引文献133

引证文献5

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部