摘要
针对目前短文本在BTM主题模型建模过程中存在的共现双词之间语义联系较弱的问题,提出一种结合cw2vec词向量模型的改进BTM主题模型(cw2vec-BTM)。使用cw2vec模型来训练短文本语料得到词向量,并计算词向量相似度。然后通过设置采样阈值来改进BTM主题模型共现双词的采样方式,增加语义相关词语的被采样概率。实验结果证明,本文提出的改进模型能有效地提高主题模型的主题凝聚度和KL散度。
Aimingat the problem of weak semantic relationship between co-occurrence words in the short text in the BTM topic model modeling process,an improved BTM topic model(cw2 vec-BTM) combined with the cw2 vec word vector model was proposed.This research uses the cw2 vec model to train short text corpora to obtain word vectors and calculates the word vector similarity.Then by setting the sampling threshold,the sampling method for co-occurrence words in the BTM topic model is improved,while the sampling probability of semantically related words is increased.The experimental results prove that the improved model proposed in this paper can effectively improve the topic cohesion and KL divergence of the topic model.
作者
王云云
张云华
WANG Yunyun;ZHANG Yunhua(School of Information Science and Technology,Zhejiang Sci-Tech University,Hangzhou 310018,China)
出处
《软件工程》
2020年第4期1-6,共6页
Software Engineering