期刊文献+

基于深度学习的验证码识别Web应用平台 被引量:3

Web Application Platform for Captcha Breaking Based on Deep Learning
下载PDF
导出
摘要 目前许多网站使用验证码阻止黑客进行暴力破解登录口令,但是随着技术的发展验证码识别的难度及成本日益提升,传统的OCR(OpticalCharacterRecognition)技术识别效率已不能满足需求。VcodeIdentify平台使用TensorFlow建立深度学习模型并结合Web应用开发的一款验证码识别软件,使用该平台用户不仅可以通过调用接口或者上传文件的形式对验证码进行识别,而且还可以建立新模型并训练,进而可以识别新类型验证码,该软件使用简单、扩展性强。 At present,many websites use verification codes to prevent hackers from performing brute-forced login passwords.However,the re-adoption of technology to develop verification codes increases the complexity and cost of recognition.The traditional OCR(Optical Character Recognition) technology recognition has been unable to meet efficiency needs.The Vcode Identify recognition platform uses TensorFlow to build a deep learning model.The verification code recognition software was developed in conjunction with a web application.Using this platform,users not only can identify verification codes by calling interfaces or uploading files but also can build and train new models to identify the new type of verification code.This system is simple to use and highly scalable.
作者 王昊 康晓凤 卢志科 施润杰 黄成鑫 WANG Hao;KANG Xiaofeng;LU Zhike;SHI Runjie;HUANG Chengxin(College of Information Engineering,Xuzhou Institute of Technology,Xuzhou 221000,China)
出处 《软件工程》 2020年第4期40-43,共4页 Software Engineering
基金 江苏省大学生创新创业训练项目(项目编号:xcx2019076).
关键词 深度学习 PYTHON WEB 验证码识别 Vcode Identify平台 deep learning python web captcha breaking Vcode Identify platform
  • 相关文献

参考文献6

二级参考文献17

  • 1Chandavale A A, Sapkal A M, Jalnekar R M.Algorithm to break visual CAPTCHA[C]//2nd International Conference on Emerg- ing Trends in Engineering and Techonology,2009:258-262.
  • 2Mori G,Malik J.Reeognizing objects in adversarial clutter:breaking a visual CAPTCHA[C]//IEEE Conference on Computer Vision & Pattern Recognition(CVPR) ,2003,1 : 124-141.
  • 3Moy G, Jones N, Harkless C, et al.Distortion estimation techniques in solving visual CAPTCHAs[C]//1EEE Conference on Computer Vision and Pattern Recognition(CVPR'04),June 2004, 2: 23-28.
  • 4Yan J,Ahmad A E.A low-cost attack on a microsoft CAPTCHA[C]//Proc of ACM,2008.
  • 5Chellapilla K,Simard P Y.Using machine learning to break visual human interaction proofs (HIPs) [C]//Saul L K, Weiss Y,Bottou L.Advances in Neural Information Processing Systems, 2005,17 : 265-272.
  • 6LeCun Y,Bottou L,Bengio Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the 1EEE, 1998, 89:2278-2324.
  • 7Simad P, Steinkraus D, Platt J.Best practice for convolut/onal neural networks applied to visual document analysis[C]//lntemational Conference on Document Analysis and Recognition(ICDAR) ,Los Alamitos,2003:958-962.
  • 8Gonzalez R C,Woods R E.数字图像处理[M].阮秋琦,阮宇智,译.2版.北京:电子工业出版社,2003.
  • 9黄赛平,许明.验证码的识别与改进[J].南京师范大学学报(工程技术版),2009,9(2):84-88. 被引量:11
  • 10左保河,石晓爱,谢芳勇,章拓.基于神经网络的网络验证码识别研究[J].计算机工程与科学,2009,31(12):20-22. 被引量:7

共引文献59

同被引文献32

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部