摘要
该文致力于研究一类随机非自治SIRI流行病模型的动力学问题.利用Lyapunov函数法,证明系统至少存在一个非平凡的正T周期解.此外,该文还建立了疾病灭绝的充分条件,并通过数值模拟验证了理论结果.
In this paper,we study the dynamics of a stochastic nonautonomous Susceptible-Infective-Removed-Infective(SIRI)epidemic model.By employing the Lyapunov function method,we show that there exists at least one nontrivial positive T-periodic solution of the system.Moreover,sufficient conditions for extinction of the disease are established.Some numerical simulations are carried out to illustrate the theoretical results.
作者
曹忠威
文香丹
冯微
祖力
Cao Zhongwei;Wen Xiangdan;Feng Wei;Zu Li(Department of Applied Mathematics,Jilin University of Finance and Economics,Changchun 130117;Department of Mathematics,Yanbian University,Jilin Yanji 130002;Department of Anesthesiology,China-Japan Union Hospital of Jilin University,Changchun 130033;Department of Mathematics and Statistics,Hainan Normal University,Haikou 571158)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2020年第1期221-233,共13页
Acta Mathematica Scientia
基金
国家自然科学基金(11701209)
吉林省科技厅青年基金(20160520110JH)
吉林省教育厅(JJKH20180462KJ)
海南省教育厅(Hnky2017ZD-14)
海南省自然科学基金(119QN205)。