期刊文献+

基于MFE的滚动轴承故障诊断方法研究 被引量:3

Research on Fault Diagnosis Method of Rolling Bearing Based on MFE
下载PDF
导出
摘要 针对滚动轴承故障振动信号含噪声多、复杂程度高的特点,为实现准确的故障诊断,提出一种基于多尺度模糊熵(MFE)的滚动轴承故障诊断方法。由于LCD方法可以起到降噪的作用,故选用LCD分解后的ISC分量作为粗粒序列,计算分量的MFE。将MFE计算得到的特征参数输入到极限学习机(ELM)分类器中,分类识别滚动轴承的4种状态。实验结果表明,该方法可以有效地提取出滚动轴承的故障特征,实现故障诊断。 Aiming at the vibration signal of rolling bearing fault that is characterized by much noise and high complexity,in order to realize the fault diagnosis accurately,a fault diagnosis method of rolling bearing basedonmulti-scalefuzzyentropy(MFE)wasproposed.BecauseLCDmethodcanreducenoise,ISC component after LCD decomposition was selected as coarse-grained sequence to calculate MFE of the component.The feature parameters calculated by MFE were input into the extreme learning machine(ELM)classifier to recognize four states of rolling bearing.Experimental results show that this method can effectively extract the fault features of rolling bearing and realize fault diagnosis.
作者 丛蕊 李纯辉 Cong Rui;Li Chunhui(Mechanical Science and Engineering College,Northeast Petroleum University,Daqing 163318,China;School of Mechanical Engineering,Changzhou University,Changzhou 213164,China)
出处 《煤矿机械》 北大核心 2020年第3期153-156,共4页 Coal Mine Machinery
基金 国家自然科学基金项目(51505079)。
关键词 滚动轴承 LCD MFE ELM 故障诊断 rolling bearing LCD MFE ELM fault diagnosis
  • 相关文献

参考文献3

二级参考文献43

  • 1于德介,程军圣,杨宇.基于EMD和AR模型的滚动轴承故障诊断方法[J].振动工程学报,2004,17(3):332-335. 被引量:47
  • 2李岳,陶利民,温熙森.用于滚动轴承故障检测与分类的支持向量机方法[J].中国机械工程,2005,16(6):498-501. 被引量:10
  • 3Lempel A, Ziv J. On the complexity of finite se- quences[J].IEEE Transactions on Information Theo- ry, 1976, 22 (1):75-81.
  • 4Pincus S M. Approximate entropy as a complexity measure[J]. Chaos, 1995, 5 (1) :110-117.
  • 5Richman J S, Moorman J R. Physiological time series analysis using approximate entropy and sample en- tropy [J].American Journal of Physiology-Heart and Circulatory Physiology, 2000, 278(6): 2039-2049.
  • 6Yan Ruqiang, Gao R X. Approximate entropy as a di- agnostic tool for machine health monitoring[J]. Me- chanical Systems and Signal Processing, 2007,21(2) : 824-839.
  • 7Lake D E, Richman J S, Griffin M P, et al. Sample entropy analysis of neonatal heart rate variability[J]. American Journal of Physiology-Regulatory, Inter- grative and Comparative Physiology, 2002, 283(3): 789-797.
  • 8Pincus S M. Assessing serial irregularity and its impli- cations for health[J]. Annals of the New York A- cademy of Sciences, 2002, 954 : 245-67.
  • 9Nikolaou N G, Antoniadis I A. Rolling element bear- ing fault diagnosis using wavelet packets[J]. NDT E International, 2002, 35 (3) : 197-205.
  • 10Alcaraz R, Rieta J J. A review on sample entropy ap- plications for the non-invasive analysis of atrial fibril- lation electrocardiograms[J]. Biomedical Signal Pro- cessing and Control, 2010, 5(1) : 1-14.

共引文献193

同被引文献34

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部