期刊文献+

基于VMD-PE和M-RVM的滚动轴承故障诊断

Fault Diagnosis of Rolling Bearing Based on VMD-PE and M-RVM
下载PDF
导出
摘要 针对传统EMD易产生模态混叠,原始SVM、RVM方法存在核函数选取困难、识别效率低等问题,提出一种基于变分模态分解(VMD)、排列熵(PE)以及混合蝙蝠算法(BA)优化的多分类相关向量机(M-RVM)的轴承故障智能诊断方法。首先,VMD分解故障信号,获得本征模态函数(IMF);然后将PE用于IMF的故障特征提取过程,形成特征序列;最后,将所得的特征序列输入基于混合BA优化的M-RVM故障诊断模型,对不同故障进行分类识别。对试验数据的分析结果表明,基于VMD-PE与M-RVM的滚动轴承故障诊断可以提高轴承故障诊断的准确度。 Aiming at the problems that the traditional EMD is easy to occur modal aliasing,the original SVM and RVM have difficulty in selecting kernel function and low recognition efficiency,based on variational mode decomposition(VMD),permutation entropy(PE)and multi-classification correlation vector machine(M-RVM)by hybrid bat algorithm(BA)optimization,an intelligent fault diagnosis method for bearing faults was proposed.First,the VMD decomposes the fault signal to obtain the eigenmode function(IMF);then converts PE into the fault feature extraction process of IMF to form the feature sequence;finally,the obtained feature sequence is input fault diagnosis model based on the M-RVM optimized by the hybrid BA to classify and identify different faults.The analysis results of the test data show that the fault diagnosis of rolling bearing based on VMD-PE and M-RVM can improve the accuracy of bearing fault diagnosis.
作者 李然 朱希安 王占刚 Li Ran;Zhu Xi’an;Wang Zhangang(School of Information and Communication Engineering,Beijing Information Science and Technology University,Beijing 100101,China)
出处 《煤矿机械》 北大核心 2020年第3期163-166,共4页 Coal Mine Machinery
基金 北京市科技创新服务能力建设-基本科研业务费(市级)(科研类)(PXM2019_014224_000026) 2018年促进高校内涵发展项目——“信息+”项目 北京市科技创新服务能力建设-提升计划项目(PXM2017_014224_000009)。
关键词 VMD PE BA M-RVM 滚动轴承 故障诊断 VMD PE BA M-RVM rolling bearing fault diagnosis
  • 相关文献

参考文献8

二级参考文献74

  • 1董雷,周文萍,张沛,刘广一,李伟迪.基于动态贝叶斯网络的光伏发电短期概率预测[J].中国电机工程学报,2013,33(S1):38-45. 被引量:72
  • 2程军圣,于德介,杨宇.EMD方法在转子局部碰摩故障诊断中的应用[J].振动.测试与诊断,2006,26(1):24-27. 被引量:46
  • 3Hamzacebi C.Improving genetic algorithms' performance by local search for continuous function optimization[J]. Applied Mathematics and Computation, 2008, 196(1): 309-317.
  • 4Zhang Zhihui, Zhang Jun, Li Yun, et al.Orthogonal learning particle swarm optimization[J].IEEE Transactions on Evo- lutionary Computation, 2011,15 (6) : 832-847.
  • 5Wang Yong, Cai Zixing, Zhang Qingfu.Differential evolu- tion with composite trial vector generation strategies and control parameters[J].IEEE Transactions on Evolu- tionary Computation, 2011,15( 1 ) : 55-66.
  • 6Yang X S.Nature inspired meta-heuristic algorithms[M]. 2nd ed.Frome, UK: Luniver Press, 2010 : 97-104.
  • 7Yang X S, Gandomi A H.Bat algorithm: a novel approach for global engineering optimization[J].Engineering Com- putation, 2012,29(5) : 464-483.
  • 8Gandomi A H, Yang X S, Alavi A H, et al.Bat algorithm for constrained optimization tasks[J].Neural Computing & Applications, 2013,22(6) : 1239-1255.
  • 9Powell M J D.An efficient method for finding the mini- mum of a function of several variables without calculating derivatives[J].Computer Journal, 1964,7(2) : 155-162.
  • 10Wang Y,Cai Z,Zhou Y,et al.Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique[J].Structural Multidiscipline Optimization, 2009,37(4) : 395-413.

共引文献219

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部