期刊文献+

一种基于集成学习的试题多知识点标注方法 被引量:4

A Multi Knowledge Points Labeling Method for Test Questions Based on Ensemble Learning
下载PDF
导出
摘要 个性化试题推荐、试题难度预测、学习者建模等教育数据挖掘任务需要使用到学生作答数据资源及试题知识点标注,现阶段的试题数据都是由人工标注知识点.因此,利用机器学习方法自动标注试题知识点是一项迫切的需求.针对海量试题资源情况下的试题知识点自动标注问题,本文提出了一种基于集成学习的试题多知识点标注方法.首先,形式化定义了试题知识点标注问题,并借助教材目录和领域知识构建知识点的知识图谱作为类别标签.其次,采用基于集成学习的方法训练多个支持向量机作为基分类器,筛选出表现优异的基分类器进行集成,构建出试题多知识点标注模型.最后,以某在线教育平台数据库中的高中数学试题为实验数据集,应用所提方法预测试题考察的知识点,取得了较好的效果. Education data mining tasks such as personalized test question recommendation,test question difficulty prediction,learner modeling need answer data and test question labeled with knowledge points.At present,the test question data are labeled manually.Therefore,it is an urgent need to label the knowledge points automati-cally by utilizing machine learning.In order to label knowledge points to massive test questions,a multi knowl-edge points labeling method based on ensemble learning is proposed in this paper.Firstly,the problem of labe-ling knowledge points is formally defined,and the knowledge graph of knowledge points is used as category labels with the help of textbooks.Secondly,the ensemble learning based method is used to train multiple support vector machines as the base classifiers,which are selected for integration with excellent performance,building the multi knowledge points labeling model.Finally,the high school mathematics test questions in the online educa-tion platform database are used as the experimental data sets.The method is used to predict the knowledge points of the test questions,and good results have been achieved.
作者 郭崇慧 吕征达 GUO Chong-hui;LV Zheng-da(Institute of Systems Engineering,Dalian University of Technology,Dalian 116024,China)
出处 《运筹与管理》 CSSCI CSCD 北大核心 2020年第2期129-136,共8页 Operations Research and Management Science
基金 国家自然科学基金资助项目(71771034,71421001) 大连市科技创新基金项目(2018J11CY009)。
关键词 教育数据挖掘 知识点标注 文本分类 多标签学习 集成学习 educational data mining knowledge points labeling text classification multi-label learning ensemble learning
  • 相关文献

参考文献11

二级参考文献279

共引文献1811

同被引文献32

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部