摘要
提出了一种融合深度学习与规则的民族工艺品领域实体识别方法.首先通过BERT预训练语言模型获得语义向量;然后将其输入到BiLSTM-CRF序列标注模型中训练并预测初步结果;最后根据领域特点提出相应的规则对错误预测结果校正.实验结果表明,在自建的民族工艺品数据集上获得的准确率、召回率和F1值分别为95.43%、90.88%和93.10%,可以有效地提取民族文本中命名实体信息.
A method of combining deep learning and rules is proposed for Named Entity Recognition in ethnic crafts field.The first will obtain the semantic vector through the BERT(Bidirectional Encoder Representations from Transformers)pre-training language model;Then input it into the BiLSTM-CRF sequence labeling model to train and predict preliminary results;Finally,according to the characteristics of the field,the corresponding rules are proposed to correct the error prediction results.The experimental results show that the accuracy,recall and F1 values obtained from the self-built ethnic craft data set are 95.43%,90.88% and 93.10% respectively,this model can extract name entity of ethnic text efficiently.
作者
王海宁
周菊香
徐天伟
WANG Hai-ning;ZHOU Ju-xiang;XU Tian-wei(Key Laboratory of Educational Informatization for Nationalities of Ministry of Education,Yunnan Normal University,Kunming 650500,China)
出处
《云南师范大学学报(自然科学版)》
2020年第2期48-54,共7页
Journal of Yunnan Normal University:Natural Sciences Edition
基金
国家自然科学基金资助项目(61862068).