期刊文献+

语文阅读理解词义判断题的支持度计算解答模型设计

The Design Model for the Support Degree Calculation of Word Sense Judgment Question in the Chinese Reading Comprehension
下载PDF
导出
摘要 本文以计算机为辅助设计语文阅读理解词义判断题的支持度计算解答模型。首先设计词义判断题解答架构,其次详细设计语言模型、点互信息、句子相似度三种不同支持度计算解答模型,最后进行实验分析。实验结果表明,在真实数据集中三种模型正确率,即63.2%、76.1%、63.2%;而在自动生成数据集中,正确率为68.2%、66.2%、65.1%。因此,此支持度计算解答模型为语文阅读理解问答解答奠定了坚实基础,促进了阅读理解深化探究。 In this paper, the computer aided design of Chinese reading comprehension word meaning judgment problem support degree calculation and solution model is taken. Firstly, the framework of word meaning judgment is designed, and then the language model, point mutual information and sentence similarity are designed in detail. Finally, the experimental analysis is carried out. The experimental results show that the correct rate of the three models is 63.2%, 76.1%, 63.2% in the real data set, and 68.2%, 66.2%, 65.1% in the automatic data set. Therefore, this support degree calculation and answer model lays a solid foundation for Chinese reading comprehension question and answer, and promotes the deepening of reading comprehension.
作者 张菊 杨勇 ZHANG Ju;YANG Yong(Hebei College of Industry and Technology Xuangang Branch,Zhangjiakou 075100 China)
出处 《自动化技术与应用》 2020年第3期48-50,共3页 Techniques of Automation and Applications
关键词 计算机 阅读理解 词义判断题 支持度 计算解答模型 computer reading comprehension meaning judgment support degree computing solution model
  • 相关文献

参考文献5

二级参考文献19

  • 1卢志茂,刘挺,李生.统计词义消歧的研究进展[J].电子学报,2006,34(2):333-343. 被引量:28
  • 2教育部.普通高中英语课程标准(实验)[S]北京:人民教育出版社,2003.
  • 3薛金星.全国及各省市高考试题全解英语卷[M]西安:陕西人民教育出版社,2011.
  • 4NAVIGLI R. Word sense disambiguation: a survey [ J]. ACM Com- puting Surveys, 2009, 41(2) : 1 -69.
  • 5CHAN Y S, NG H T. Scaling up word sense disambiguation via par- allel texts[ C]//AAAI 2005: Proceedings of the 20th National Con- ference on Artificial Intelligence. Menlo Park: AAAI Press, 2005, 3:1037 - 1042.
  • 6PILEHVAR M T, JURGENS D, NAVIGLI R. Align, disambignate and walk: a unified approach for measuring semantic similarity [ C]//Proceedings of the 51 st Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computa- tional Linguistics, 2013, 1:1341 - 1351.
  • 7NAVIGLI R, PONZETTO S P. Joining forces pays off: Multilingnal joint word sense disambiguation[ C]// Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg: Asso- ciation for Computational Linguistics, 2012:1399 - 1410.
  • 8STEVENSON M, AGIRRE E, SOROA A. Exploiting domain infor- mation for word sense disambiguation of medical documents[ J]. Journal of the American Medical Informatics Association, 2012, 19 (2) : 235 - 240.
  • 9AGIRRE E, de LACALLE O L, SOROA A. Random walks for knowledge-based word sense disambiguation [ J ]. Computational Linguistics, 2014, 40(1): 57-84.
  • 10NAVIGLI R, LAPATA M. An experimental study of graph connec- tivity for unsupervised word sense disambiguation[ J]. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 2010, 32(4) : 678 - 692.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部