期刊文献+

融合多特征的视频帧间篡改检测算法 被引量:1

Video inter-frame tampering detection algorithm fusing multiple features
下载PDF
导出
摘要 传统的视频帧间被动取证往往依赖单一特征,而这些特征各自适用于某类视频,对其他视频的检测精度较低。针对这种情况,提出一种融合多特征的视频帧间篡改检测算法。该算法首先计算视频的空间信息和时间信息值并对视频进行分组,接着计算视频帧间连续性VQA特征,然后结合SVM–RFE特征递归消除算法对不同特征排序,最后利用顺序前向选择算法和Adaboost二元分类器对排序好的特征进行筛选与融合。实验结果表明,该算法提高了篡改检测精度。 Traditional passive forensics of video inter-frame tampering often relies on single feature.Each of these features is usually suitable for certain types of videos,while has low detection accuracy for other videos.To combine the advantages of these features,a video inter-frame tampering detection algorithm that could fuse multi-features was proposed.The algorithm firstly classified the input video into one group based on its space information and time information values.Then it calculated the VQA features that represented the video inter-frame continuity.These features were sorted by the SVM-RFE feature recursive elimination algorithm.Finally,the sorted features were filtered and fused by the sequential forward selection algorithm and Adaboost binary classifier.Experimental results show that the proposed algorithm could achieve higher tampering detection accuracy.
作者 肖辉 翁彬 黄添强 普菡 黄则辉 XIAO Hui;WENG Bin;HUANG Tianqiang;PU Han;HUANG Zehui(School of Mathematics and Information,Fujian Normal University,Fuzhou 350007,China;Fujian Research Center for Big Data Mining and Applied Engineering,Fuzhou 350007,China;Shih Hsin University,Taipei 350108,China)
出处 《网络与信息安全学报》 2020年第1期84-93,共10页 Chinese Journal of Network and Information Security
基金 国家重点研发计划专项基金资助项目(No.2018YFC1505805) 应用数学福建省高校重点研究资助项目(No.SX201803)。
关键词 视频篡改检测 融合算法 特征选择 Adaboost二元分类 视频分组 video tamper detection fusion algorithm feature selection Adaboost binary classification video grouping
  • 相关文献

参考文献1

二级参考文献8

  • 1Wang Weihong,Farid H.Exposing digital forgeries in video by detecting double MPEG compression[C]//MM and Sec ACM (2006).New York: [s.n.],2006: 37-47.
  • 2Stamm M C,Sabrinalin W,Rayliu K J.Temporal forensics and anti-forensics for motion compensated video[J].IEEE Trans on IFS,2012,7(4): 1315-1329.
  • 3Feng Chunhui,Xu Zhengquan,Zhang Wenting,et al.Automatic location of frame deletion point for digital video forensics [C]//IH & MMSec 2014.Salzburg: [s.n.],2014: 171-179.
  • 4Chao Juan,Jiang Xinghao,Sun Tanfeng.A novel video inter-frame forgery model detection scheme based on optical flow consistency[C]//Lecture Notes in Computer Science (2013).Berlin: Spring,2013: 267-281.
  • 5Zhang Zhenzhen,Hou Jianjun,Ma Qinglong,et al.Efficient video-frame insertion and deletion detection based on inconsistency of correlations between LBP-coded frames[J].Security & Communication Networks,2015,8(2): 311-320.
  • 6Wang Zhou,Bovik A C,Sheikh H M,et al.Image quality assessment: from error visibility to structural similarity[J].IEEE Trans on Image Processing,2004,13(4): 600-612.
  • 7黄添强,陈智文,苏立超,郑之,袁秀娟.利用内容连续性的数字视频篡改检测[J].南京大学学报(自然科学版),2011,47(5):493-503. 被引量:15
  • 8谌志鹏,邹建成.基于对象的抗几何攻击的视频水印算法[J].北京邮电大学学报,2012,35(4):33-37. 被引量:4

共引文献3

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部